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1
Introduction

1.1 Motivation

The plan for this masters thesis (Diploma) was conceived as a result of the author’s
continuous involvement in Virtual Werder 3D, the RoboCup soccer simulation league
team of the University of Bremen since its foundation back in March 2004. Due to this
the motivation section begins from the point of view of a long-time developer of the
existing multi-agent framework which includes a short digest of the work covered so far
in our working group1. Starting from this viewing angle the research problem is identified
and the scientific motivation for this thesis is developed.

In 2005 Virtual Werder 3D participated without noteworthy success in the RoboCup
world championships in Osaka, Japan. Back then the team used the second version of
the Virtual Werder multi-agent code base2 [KLP+05] which was not yet competitive on
a world-class level neither against other German simulation league teams3 nor against
strong international teams4.

In the wake of the aforementioned RoboCup event an in-depth analysis of the existing
framework infrastructure was conducted at the end of which the team felt that without
a radical new multi-agent architecture implemented from scratch, further progress would
be very hard to achieve.

This is why in 2006 Virtual Werder 3D participated with a new code base at the Robo-
Cup world championships in Bremen, Germany [LRS+06, LPR+06]. Our team was able to
reach the quarter finals, ranking at place eight from 32 participating teams at the end of
the competition. The result proved that due to continued reviews and optimizations the
code base had matured enough to be competitive under tournament conditions. It had
also reached a level where it was feasible to consider using it to foster scientific research
dedicated to a deeper treatment of some major challenges in the development of a team
of simulated soccer agents which were still untouched by the team so far.

One of those challenges motivated the research done in this masters thesis. The chal-
1 A more elaborate treatment of the history of Virtual Werder is presented in section 2.2.
2 The first embodiment used in 2004 was build on top of the agenttest code base provided together with

the soccer server. In 2005 Virtual Werder 3D used a self-developed code base for the first time.
3 such as Brainstormers 3D (Osnabrück), AT Humboldt 3D (Berlin) or RoboLog 3D (Koblenz)
4 such as Aria 3D (Iran), Caspian (Iran) or ZJUBase (China)

1
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2 Spatio-Temporal Real-Time Analysis of Dynamic Scenes

lenge has been outlined in a clear and concise manner by Stanton & Williams in [SW04,
p.758]:

”One of our motivations [. . .]is to build a robot soccer multi-agent system in which
each robot knows it is playing soccer and understands all the important elements of the
game such as it is a ball game with a set of rules that govern how it is played.”

The challenge thus is to enable simulated soccer agents to understand the dynamic
nature of a game of (simulated) soccer. At the time when the proposal for this diploma
thesis was compiled the agent’s knowledge representation built upon an assumption which
involved a coarse simplification of the understanding of dynamic scenes5 which may be
summarized as follows: In order to understand the situation on the field it is satisfactory
to assemble and maintain sufficiently complete knowledge about the geometrical layout
of the dynamic scene on the soccer field where geometrical layout refers to absolute or
relative positions of game-relevant objects and the spatial relations between those objects.

An appropriate metaphor for the perception of an agent at that time is that of a camera
snapshot taken from the agent’s point of view at a particular moment during the game.

In server versions prior to 0.5 an omni-directional camera with a complete 360 degrees
field of vision was used. At that time the observation of the agents was made up of a
single snapshot. Subsequent perceptions completely replaced the agent’s observation. In
order to extend the agent’s knowledge about the situation in the temporal dimension, a
sequence of observations was maintained, some of them recent observations describing
the immediate past, some of them artificially assembled observations hypothesizing the
immediate future.

In early 2006 the 0.5 series of the soccer server was introduced, which replaced the
omni-cam with a camera featuring a 180 degrees field of vision. Thus, the relation of
perceptions and observations was revised. Since each single perception was guaranteed
to be incomplete, each new perception was now integrated into the existing observation
in order to calculate an approximation of the current observation. The acquisition of
complete snapshots got more complicated yet the system of knowledge representation
built upon the snapshot sequence remained the same.

The critical question that remained was: Given the properties of the task environment
(playing a game of simulated soccer in a 3D world with the goal of winning that game) is
a snapshot sequence an adequate representation of the dynamic scenes under inspection?

A classification of the task environment according to the categorization introduced by
Russel & Norving in [RN95, chapter 2.3] produces the following result: In comparison
to other task domains simulated soccer is particularly hard and complex. First of course
it is only partially observable. Due to the complexity of the environment and the role
of random in the generation of noise for the agent’s sensations the task environment
certainly appears to be stochastic. It is non-episodic and thus sequential. It is a dynamic
environment by nature with discrete time but several continuous aspects in the agent
sensors. Finally, it is a multi-agent environment with cooperative (team play) as well as
competitive aspects (due to the opponent team).

In the light of this classification at least two problems arise with regard to the adequacy
of a knowledge representation based on the snapshot sequence metaphor that immediately
catch the reader’s eye.

The first problem arises due to the sequential nature of the task environment. The
actions which are performed by soccer agents at a single point in time have a natural
temporal dilation spanning multiple observations. When only the snapshot sequence is
used information concerning the unfolding of agent actions is stored implicitly within

5 According to Miene in [Mie04a] a dynamic scene ”consists of a set of objects that change their position
over time” (translation by the author).
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the geometric flow6. Thus there’s little or no chance to actively exploit this kind of
information.

The second problem which can be identified is due to the fact that actions carried
out by the remaining 21 agents on the soccer field cannot simply be attributed to the
environment itself as the philosophy behind the snapshot metaphor implies. On the
contrary: The classification of the task environment dictates that there are 22 intentional
entities involved in the simulation. Intention in this context means that the soccer agents
interact with their environment in order to achieve certain goals. Whether these goals are
explicitly formulated or implicitly weaved into the agent code is a subordinated fact. The
important issue is that the simulated soccer players should be treated as rational agents7

whose actions are performed with purpose.
The explicit representation of those intentional actions lies beyond the capabilities of the

snapshot-based knowledge representation due to the fact that it works in an unintrusive
manner with respect to the state of mind of the other actors in the dynamic scene. Only
those pieces of information can be represented which can be derived by unbiased visual
observation of the geometric layout/flow in the dynamic scene.

In order to understand what is happening in the soccer environment inhabited by 22
intentional agents the dynamic scenes need to be interpreted in light of soccer expert
knowledge. Since it is safe to attribute intentionality to the scene actors their actions
should be recognized by exploiting not only the fundamental information provided by the
geometrical flow in the dynamic scenes but also expert knowledge about the temporal
composition of intentional actions. The latter allows the retrieval of actions within the
snapshot sequence. To bring about this higher level of understanding which implies a
qualitative aspect in knowledge representation a variation of spatio-temporal analysis of
dynamic scenes as introduced by Miene [Mie04a] will be applied.

1.2 Scope and Intention

As already mentioned in the previous section the goal of this thesis is the design and
implementation of a system for spatio-temporal analysis of dynamic scenes in the Robo-
Cup 3D Soccer Simulation League [KO04].

The design of a system for general-purpose spatio-temporal analysis in arbitrary dynam-
ics scenes originating from a broad range of application domains marks a long-term goal
in our research group [LPR+06]. Noteworthy fundamental work in this research field with
immediate relevance for this thesis has been acquired both by Miene [MV02, MVH04,
Mie04a] and Gehrke [Geh05] (cf. section 4.1.1) in chapter ’Spatio-Temporal Analysis of
Dynamic Scenes - An Overview’, p.29). Due to the constraints imposed by scope and du-
ration of a masters thesis the work presented here is restricted to the application domain
of simulated soccer.

It is worthwhile to identify the purpose of the analysis to be performed in the context
of further developments of the Virtual Werder team. First and foremost the approach
presented in subsequent chapters is meant to improve the grounding situation of the soccer
agents playing autonomously on the simulated soccer field. The thesis seeks to make a
contribution on our way towards an intelligent soccer agent that actually understands the
complex situation in its immediate environment.

6 Geometrical flow in this context should be understood as the change of the geometrical layout of a
dynamic scene over the course of time

7 as introduced by Russel & Norvig in [RN95, section 2.2]
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4 Spatio-Temporal Real-Time Analysis of Dynamic Scenes

1.2.1 Enabling a Rich Qualitative Representation

This thesis proposes the use of a rich qualitative representation within the agent’s world
model provided by means of a spatio-temporal analysis of dynamic scenes as a step in this
direction. The qualitative representation complements rather than replaces the accordant
quantitative representation. The soccer agents thus gain a hybrid knowledge base.

While all relevant information about the course of the game is already encoded in the
quantitative representation, by providing a qualitative layer in the agent knowledge base,
knowledge about concepts with a certain temporal dilation, describing dynamic aspects
of a soccer game, are encoded in an explicit and concise manner.

The qualitative representation should be rich in that it entails both knowledge about
actions or action sequences as well as knowledge suitable to describe the situation con-
text in a game of simulated soccer. An example for a relevant situation context is the
ball control state which among other things describes whether the ball is controlled by
single team, hard-fought for or free. Such pieces of qualitative information have a lower
complexity in comparison to single- or multi-player actions. Yet they may not be ne-
glected when a multi-layered and thus versatile qualitative representation is formulated
as a goal which, while per se not leading to an immediate improvement in the agents’
game performance, constitutes a mandatory prerequisite for subsequent research efforts
in neighboring research fields which bear the promise of an increased competitiveness
of the soccer agents. Examples for such research fields comprise amongst others plan
recognition, action/intention prediction [Elf07] and the learning of opponent models.

1.2.2 Indirect Benefit for Overall Agent Performance

Plan recognition approaches typically seek to identify the current strategy of agent groups
which characterize the typical style of play of an agent team such as a quick change of
wings and subsequent attack over the left wing concluded by a high cross right into the
penalty area taking the adversary’s defense off-guard by placing the ball in the defender’s
back. Plans bear noteworthy importance in the domain of simulated soccer due to the fact
that, even though to a lesser extent than American football, soccer is a tactic-oriented
team sport. If the plans of an adversary team can be recognized in due time effective
counter measures are likely to be more effective as compared to pure reactive behavior.

A proper qualitative representation of the dynamic scene comes in handy due to the
fact that the strategic moves which are considered can be thought of as compositions of
simpler actions performed by the agents that are involved in the plan execution. Thus the
basic qualitative building blocks are provided to fuel plan recognition approaches.

A noteworthy multi-stage research project which couples spatio-temporal analysis and
plan recognition has been demonstrated by the VITRA project [Her95a] (cf. chapter 4
on page 29) where the SOCCER system [HG89] provided qualitative input data such as
recognized actions for the REPLAI system [RS88, Ret91] dedicated to high-level plan and
intention recognition.

The ability to recognize plans leads to the compilation of sophisticated opponent models
which in turn allows the development of opponent-sensitive auto-adaptive behaviors for the
own team. It is immediatly apparent that such behaviors bear the potential to outperform
static behaviors which disregard the specific properties of the respective adversary team
and cannot possibly exploit potential weaknesses in the opponent strategy.

The analysis approach developed in this thesis should be considered as a first step on
towards an intelligent use of the rich amount of information provided by the environment
through sensor data.
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1.2.3 Immediate Benefit for Online Statistics

It should also be noted that while not constituting the driving purpose of the assembly and
maintainance of a qualitative representation of the world the availability thereof provides
immediate benefits such as the ability to maintain online game statistics based on the
situation context. Such statistics can provide clues whether or not certain strategies are
successful against the respective adversary team. The term strategies in this context
relates to several levels of granularity such as team-wide game strategies, the system of
play (e.g. 4-4-2, Catenaccio8) or global style of play (e.g. kick’n’rush, short-pass-oriented)
as well as to preferences with respect to the character of action execution (e.g. low vs.
high passes). The exploitation of online game statistics has already been proposed for
integration into the Virtual Werder team [LRS+06, p.16].

1.2.4 Immediate Benefit for the Development Process

The preceding paragraphs render obvious that the main focus of a spatio temporal analysis
of soccer scenes in this thesis lies upon the improvement of the grounding situation of the
soccer agents. Nevertheless the qualitative description of soccer scenes also provides a
surplus value for the agent developers in more than one respect. First the online creation
of comprehensive, i.e. intuitive and human-understandable, game progression reports
is rendered possible since adequate raw data is provided. An investigation of several
approaches reviewed for the state-of-the-art survey in chapter 4 shows that a basis for the
development of automated moderation/commentator systems is made available. While
for the implementation of this kind of systems additional research in the area of artificial
discourse generation would be imperative, comparatively simple written log reports lie
within immediate reach. Such reports, available right after the final whistle, are valuable
in that they improve the ability of multi-agent developers to understand the decision
processes which drove the choice of actions of the soccer agents during the course of the
game. This is particularly true since due to the qualitative character of the representation
the situation is described in terms which are familiar and intuitive for a human soccer
expert. The agent relates to actions and the situation context on the field in a way which
is appropriate for the domain of discourse through use of suitable vocabulary.

Long-term experience in the development of the Virtual Werder multi-agent system
also suggests that the operational availability of a suitable qualitative representation can
facilitate the software development process of additional agent skills and behaviors con-
siderably due to the fact that high-level information is made immediately accessible in
the knowledge base. ”Provided the [qualitative] concepts correspond to those in (human)
soccer theory, it [. . .]eases the task of agent specification for the designer.” [SFL06, p.1].
The level of abstraction which is used throughout the code is raised rendering the whole
code-base easier to understand and maintain both for adept developers and novices. The
simplification can be achieved mainly through an avoidance of low-level coding fruequently
found when working directly on quantitative data such as Cartesian or polar coordinates.

1.3 Thesis Outline

The purpose of this section is to give the reader an idea about the structure of this diploma
thesis now that the scope and intentions have been outlined in the last section.

Chapter 2, ’RoboCup as Domain of Discourse’, will begin with a survey of RoboCup
including a historical digest of the RoboCup challenge and the soccer simulation league
in particular. The Virtual Werder team is also introduced.
8 tactical system in soccer with strong emphasis on defense and tactic fouls (cf.

http://en.wikipedia.org/wiki/Catenaccio (visited:03/11/2006)

http://en.wikipedia.org/wiki/Catenaccio
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6 Spatio-Temporal Real-Time Analysis of Dynamic Scenes

Chapter 3, ’Scenarios and Demands’, gives a comprehensive overview of the concepts
– facts, events, actions and action sequences – the analysis proposed in this thesis is sup-
posed to recognize in dynamic soccer scenes. The demands on the analysis are summarized
precisely in the same chapter.

Chapter 4, ’Spatio-Temporal Analysis of Dynamic Scenes - An Overview’ provides a
survey of related scientific approaches and, based on the compiled set of demands from
the previous chapter, identifies relevant aspects of the respective work which should be
considered for the development of an own approach.

Chapter 5, ’A Conceptual Approach for 3D Soccer Simulation’ will describe in detail the
approach for an incremental real-time spatio-temporal analysis of dynamic scenes which
is proposed in this thesis. This chapter constitutes the core contribution of this thesis.
It also comprises a presentation of relevant techniques for the qualitative description of
time, space and action.

Chapter 6, ’The Realized Analysis Framework’, describes the implementation of the
incremental recognition approach introduced in chapter 5 within the Virtual Werder multi-
agent system.

Chapter 7, ’Evaluation’, shows the results of that implementation in a series of tests
tries to measure the success and the quality of the approach proposed in chapter 5.

Finally chapter 8, ’Conclusion’, summarizes the results of the thesis as a whole. The
primary question of interest here is to which degree the developed methodology/system
prototype is able to fulfill the demands established in chapter 3. Furthermore, possible
paths for future work are highlighted.



2
RoboCup as Domain of Discourse

The second chapter of this thesis is devoted to a survey of the Robot World Cup Initiative.
The purpose of this survey is to present a comprehensive research context for the work
found in subsequent chapters.

In section 2.1 RoboCup is introduced as a grand challenge for artificial intelligence
and robotics research. The long-term vision of the RoboCup initiative is outlined as well
as the role of the simulation- and hardware leagues in the realization of this vision. A
review of the milestones in the development of RoboCup beginning with the first official
championships Nagoya (Japan) in 1997 to the most recent championship in Bremen
(Germany) in 2006 is presented. The review puts special emphasis on the development
of both the 3D Soccer Simulation League and the Humanoid League which complement
each other in many respects. It is shown that both leagues seem to have reached a state
where indicators for big leaps forward towards human robot soccer players exist. These
indicators are examined and the relation to the contribution proposed in this thesis is
established. The review ends with a description of the currently planned joined road-map
for both simulation and humanoid league which reflects the joined progress towards the
final goal of RoboCup .

After the global view upon RoboCup as domain of discourse, section 2.2 introduces
Virtual Werder, the simulation league team of the University of Bremen in more detail.
The purpose of this section is to outline the progress of the team since the introduction
of the 3D simulation league in 2004. This is done due to the fact that the work presented
in this thesis deeply relies upon the ground work done by the Virtual Werder developer
team so far.

2.1 The RoboCup Challenge

The Robot World Cup Initiative was proposed in the early and mid 1990’s in a series of
papers [KAK+95, KTS+97] by a group of Japanese computer scientists, amongst oth-
ers Hiroaki Kitano and Minoru Asada1. These researchers felt that the time had come

1 At the time of writing Minoru Asada is the acting president of the international RoboCup Federation.

7
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8 Spatio-Temporal Real-Time Analysis of Dynamic Scenes

to propose a new grand challenge2 in their research community that would be widely ap-
proved as a standard benchmark for novel state-of-the-art scientific approaches to research
problems in both robotics and multi-agent systems3 and that would retain relevance for
several decades to come. RoboCup was proposed at a time where the grand challenge of
’classical’ AI, to win in a chess match against the reigning world champion was about to
be solved4. Even though the research community had learned to handle problems with
simple task environments as found in board games5 it had become clear that once those
problems had been cracked by brute force as in the case of chess the applied solutions
became ”irrelevant for handling more complex aspects of the real world in which none
of the classical assumptions [. . .] hold” [Roj06]. Thus, robot soccer was proposed as the
new grand challenge due to its complex task environment (cf. section 1.1) which rendered
it directly relevant for real world applications while at the same time providing a setting
where research was still feasible in terms of technical and financial prerequisites. Soccer
was also chosen due to its immense popularity worldwide.

In order to provide the research community with a long-term perspective in [KA00]
Kitano stated the vision of the RoboCup challenge as follows: ”Our goal is to develop a
team of fully autonomous robots that can compete against the World Soccer Champion
team by the year 2050.”

Since the first RoboCup tournament 1997 in Nagoya [NSH+98], a large number of
researchers from all over the world has joined the initiative turning RoboCup into one
of the biggest competitions in AI which draws attention not only from professionals in
computer science and engineering disciplines but also from an interested public. The
latter can be attributed to the innovative research presented in attractive competition in
the various leagues but also to the choice of the right game.

When RoboCup was introduced in the mid-1990’s it started with both a hardware (Small-
Size- and Middle-Size Robot League) and a software (2D Soccer Simulation League)
track of competitions. In order to work towards the vision of RoboCup as stated above
the global task to construct an artificial, humanoid soccer player capable of competing
with the reigning human soccer world champion were decomposed in two sub-tasks that
provided the research focus for both the hardware and software track. The first sub-
task which was associated with the hardware leagues comprises the engineering task to
develop a suitable humanoid body with a proper set of sensors and actuators and the
lower cognitive functions of the robot’s ’brain’ such as reflexes, basic locomotion and
cognition. The second sub-task which was associated with software leagues comprises
the development of the higher cognitive functions of the robot such as knowledge re-
presentation, deliberation, communication and learning. The subsequent paragraphs will
investigate the improvements that could be attained since the introduction of RoboCup
in the accomplishment of these tasks.

2 [HM05] presents a characterization for the concept of a grand challenge as follows: ”A grand challenge
for research in science and engineering pursues a goal that is recognized [. . .]decades in advance; its
achievement is a major milestone in the advance of knowledge and technology celebrated not only
by the researchers themselves but by a wider scientific community and the general public. It has no
guarantee of success.” To develop a program which can beat the reigning world champion in chess is
an example for a grand challenge that was conducted and completed successfully.

3 Concrete problems in robotics included acting in a real-world environment, handling of incomplete
and uncertain knowledge, sensor systems, (real-time) image processing and actuator design while in
the multi-agent systems domain cooperation and communication strategies, planing and knowledge
representation were in the focus of attention

4 In February 10, 1996 the computer system called Deep Blue was the first machine to win a single match
against the reigning world champion Garry Kasparov under regular time controls. However Kasparov
was able to win this first contest comprised of a total of six games. In 1997 an improved version of
Deep Blue manages to win the rematch, thereby solving the grand challenge. [Hsu02, New02]

5 which were also referred to as ’toy-problems’
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Figure 2.1: The evolutionary progress of the RoboCup Soccer Hardware Leagues (left:
Small-size Robot League; center: Four-legged League; right: Humanoid League), official
RoboCup image material

2.1.1 Development in the Hardware Leagues

When the first official RoboCup championship took place 1997 in Nagoya (Japan) [NSH+98],
the event started with two hardware leagues which differed primarily in the size and level
of autonomy of the soccer robots while the setup in both leagues featured a simple wheel-
based design and unarticulated bodies. In the Small-size Robot League five robots per
team each of them no bigger than 18 cm are controlled remotely by a central dedicated
server which is connected to a ceiling-mounted camera system that provides bird-view
images of the situation on the soccer field. In the Middle-size Robot League each of the
four robots in a team is fully autonomous during soccer matches. The robots are no
bigger than 50cm, carry their own processing unit and use an omni-directional camera
system to perceive its immediate environment. Both small-size and middle-size players
belong to the first generation of RoboCup robot systems.

In 1999 the Four-legged Robot League was first introduced at the RoboCup in Stock-
holm (Sweden). AIBO robot dogs, which were commercially produced by Sony6, were
proposed as a standardized, autonomous, four-legged platform for 4-4 soccer games. Since
the robot platform is a given the Four-legged Robot League is a competition for the best
programming making the best of the available resources. The new league marked a mile-
stone in RoboCup soccer since a decisive first step away from the wheel-based systems (as
found in the original Small-size and Middle-size robot leagues) towards legged locomotion
was taken. The AIBOs constitute the second generation of RoboCup robot systems.

The RoboCup 2002 in Fukuoka (Japan) marked the next important milestone with the
introduction of the Humanoid League. In contrast to the Four-legged Robot League the
Humanoid League is concerned with biped locomotion of autonomous humanoid robots.
The league started with previews7 and technical challenges. First regular 2-2 games were
conducted at the RoboCup 2005 in Osaka (Japan). In 2006 at the RoboCup in Bremen
(Germany) the Humanoid League was divided in two sub-leagues, kids-size and teen-size
which differ primarily in the size of the robots. As this league matures so does the design
of the robots. The typical design currently used in competition is based on servo motors
used as actuators and a simple but robust control method. The main focus of research in

6 Information about the AIBO platform is available on a dedicated web site:
http://support.sony-europe.com/aibo/index.asp (visited:06/08/2006)

7 such as one-on-one or penalty-kick scenarios
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the Humanoid League lies upon dynamic walking and acceptable stability/robustness of
the hardware.

These humanoid robots which feature the coarse physical layout of a human soccer
player belong to the third generation of RoboCup robot systems. They demonstrate the
progress of the hardware leagues towards a suitable artificial human shell and motion
controllers (lower cognitive functions of the human brain) to take on the human soccer
world champion in 2050 but they also have a significant drawback: Even though those
robots’ principal layout already resembles the human archetype due to the servos the
motion apparatus is way too bold and heavy in order to allow for human-like elegance in
treatment of the ball as well as in dynamic walking/running.

The RoboCup in Bremen offered a glimpse at what might become the next generation
of humanoid robots by means of the introduction of the new teen-size robot model Lara8.
Lara is a prototype designed and built by the University of Darmstadt featuring a revolu-
tionary architecture compared to her fellows which is based on a compact endo-skeleton
and artificial muscles.

It can be argued that Lara marks a shift in the hardware research focus that is of ex-
traordinary importance with respect to the global vision of RoboCup . For the first time
researchers within the RoboCup community are not satisfied to build a robot system that
mimics the human archetype in terms of body layout and motion patterns using traditional
technical means borrowed from other fields of activity. They are also interested to learn
from the advanced design principles provided by nature in order to develop new techno-
logical means to build for example a motion apparatus adhering to the same principles
and thus inheriting abilities and advantages of the natural equivalent.

2.1.2 Development in the Software Leagues

While the hardware track in RoboCup Soccer saw a steady progress towards advanced
humanoid robots and a continued adaption and diversification of the respective leagues
since Nagoya 1997 [NSH+98], the development of the soccer simulation can be described
simply in terms of two eras: the classical 2D Soccer Simulation (since 1997) and the 3D
Soccer Simulation (since 2004).

During the first seven years of RoboCup tournaments the 2D Soccer Simulation League
was unique in that it was both the only software league in RoboCup Soccer and the only
league that featured a full set of eleven players per team right from the beginning. The
simulation of the simplified soccer environment relied upon the Soccer Server originally
developed by Itsuki Noda et al. [Nod95, NMHF97]. The 2D Soccer Simulation League
was introduced as a refuge for those developers which, especially in the first years of Robo-
Cup , would not want to wait for the hardware leagues to mature enough to host soccer
matches where tactical considerations rather than plain ball control were crucial factors for
a team’s success. This is why a simulation with a high level of abstraction and some major
simplifications such as a missing space dimension could be tolerated especially since a lot
of progress could be made by improvements in the multi-agent system (MAS) development
of the teams while the changes to the server were only mild and - compared to hardware
leagues - conservative. Due to the long development time the Soccer Server became quite
robust and with additions such as a coach in 2001 strengthened its dominance as basis
for research in multi-agent-systems even beyond the introduction of its successor, the 3D
Soccer Server. Most of the work groups whose approaches to spatio-temporal analysis
of dynamic scenes are reviewed in chapter 4 are situated in the 2D Soccer Simulation
League.

Due to the simplified simulation model of the 2D Soccer Simulation League, a three-
8 Information about Lara is available on a dedicated web site:

http://robocup.informatik.tu-darmstadt.de/humanoid/lara/index.html (visited:06/08/2006)
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Figure 2.2: The evolutionary progress of the RoboCup Soccer Simulation Leagues, Ren-
dering by Heni Ben Amor

dimensional physical simulation was created with a new 3D soccer simulator [KO04,
Kög03] designed to be capable of addressing additional classes of problems beyond those
already coped with in 2D. First according to [MBdSG+06, p.3] ”Articulated agents create
the problem of coordinating several actions of the same agent among each other, as well
as with the global team behavior”. Second, ”Decision making procedures have to deal
with a much higher complexity of the decision space, compared to 2D Soccer Simulation
League”.

The 3D Soccer Simulation League was introduced at the 2004 RoboCup in Lisbon (Por-
tugal). At that time the 3D Soccer Server featured a three-dimensional environment with
a soccer pitch compliant with FIFA soccer rules. It also shipped with a largely improved
physics model in terms of realism9 compared to the 2D equivalent. However the initial
agent design used in 2004 was simplistic even from the point of view of the 2D simulation.
The soccer agents were represented as solid spheres 44cm in diameter with homogeneous
omni-drive and omni-kick abilities. No possibility was implemented to control the ball
other than to kick it along the vector spanned by the agent’s and ball’s 2D coordinates.
The agents used an omni-camera which allowed the perception of all objects on the soc-
cer pitch with only slight simulated noise in the vision perceptor. Communication was
not implemented. At this point 3D simulation was still in its initial maturation process
where a stabilization of the 3D soccer server and the development of low level controllers
were in main focus while the development of strategic play, communication strategies,
or planning was deferred and typically being investigated further in the well-established
2D Soccer Simulation League. Regardless of the simplicity of the agent design the intro-
duction of the 3D Soccer Simulation League nevertheless marked a milestone in soccer
simulation since it initiated a steady transition from the undoubtedly restricted scenario
in terms of the task environment classification that was 2D simulation towards a realistic
simulation of the soccer game mentioned in the vision formulated for 2050. As such this
transitions bear some resemblance to the transition from the grand challenge ’chess’ to
’soccer’.

While the 2005 RoboCup in Osaka (Japan) saw improvements in the low level controllers
in the 3D Soccer Simulation League which resulted in the possibility for fast dribblings
with the ball, improved pass play and better communication-less coordination within the
teams noticeable development of the league itself was delayed. In 2006 the 3D Soccer
9 Application and treatment of forces for acceleration and deceleration, details such as air resistance,

proper collision detection.
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Simulation League managed to adopt a list of features first introduced in the 2D Soccer
Simulation League such as a restricted field of vision, a camera which was mounted on
a movable neck which allowed pan-tilt actions, restricted communication of information
reminiscent of shouting commands in a real soccer match and a first step towards player
differentiation with the introduction of a goal keeper capable of catching a ball within
a certain radius. The changes were used in the 2006 RoboCup in Bremen (Germany)
and let to technically attractive games over the course of the competition. The focus of
research interest had changed towards strategy due to the broad availability of controllers
with acceptable or even excellent quality.

However the 3D Soccer Simulation League still needed to officially reach the next mile-
stone in its development through the adoption of articulated bodies thus addressing the
second class of additional problems identified in [MBdSG+06]. Since 2005 the server de-
velopment team worked on the integration of a biped agent design in the 3D Soccer Server.
A first technical preview of the new design was released in 2005 with only rudimentary
functionality. In order to foster the development of controllers for biped walking it was
possible to submit a walking controller as qualification material for RoboCup 2006. In
2007 finally, the forceful change was brought about with the abandonment of the spheres
in favor of an all-new server based on the Spark framework [OR05] and a complete10

humanoid agent model. As a consequence, the center of attention was shifted from
high-level tactical aspects to enabling sufficient locomotion and kick controllers. Success-
ful attempts of writing such controllers and transferring knowledge from the Humanoid
League were presented at the RoboCup 2007 in Atlanta (USA). As of writing these lines
there are further ambitious efforts underway towards far-reaching cooperation and a joint
road map for the Humanoid League and the biped flavor of the 3D Soccer Simulation
League [MBdSG+06] initiating a league convergence towards 2050.

While the developments towards humanoid simulation illustrate the server-side changes
in soccer simulation until late 2006 significant progress could also be made client-side
by the RoboCup community towards more sophisticated high-level cognitive functions.
Among the trends which can be identified and which bear relevance for the work pre-
sented in this thesis is a.) the ongoing transition from purely reactive agent behaviors
towards (online) deliberation and planning and b.) the transition from purely quantita-
tive knowledge representations towards hybrid representations which take advantage of
both quantitative and qualitative aspects. Active areas of research in the latter direction
comprise amongst others the development of appropriate spatial representations [WH05],
formalizations of concepts from soccer theory [DLM+05], real-time constrained reasoning
upon qualitative scene descriptions [DFL03] and recognition of motion situations, agent ac-
tions and tactical moves in soccer matches [MV02, Mie04a]. This research is an indicator
for a development analogous to that initiated by Lara in the humanoid league. Research
seeks to understand the structure of human reasoning and to build software agents whose
own reasoning processes are designed to feature increased cognitive adequacy with respect
to the human archetype.

2.2 RoboCup Soccer Simulation in Bremen

Virtual Werder 3D was initiated by Ubbo Visser in March 2004 as a successor to Virtual
Werder [DHS+01], a self-organized student project at the Intelligent Systems Department
of the Center for Computing Technologies of the University of Bremen in March 2004.
The goals that were formulated initially comprised the establishment of a competitive
soccer team in the recently introduced RoboCup 3D Soccer Simulation League and the
effective transfer of knowledge and experience obtained during the four years of active
involvement of Virtual Werder in the 2D Soccer Simulation League.
10 complete in terms of a body layout with upper and lower extremities
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Figure 2.3: Scenes from a match in the RoboCup 3D Soccer Simulation League (Virtual
Werder 3D takes on SEU 3D in a friendly match during preparation for RoboCup 2006 in
Bremen)

In June 2004 Virtual Werder 3D which at that time comprised five students assembled a
first rough framework based on the sample agent that shipped with the 3D Soccer Server
and participated in the first real 3D competitions at the RoboCup in Lisbon (Portugal).

In October 2004 Virtual Werder 3D became part of the RoboCup Transfer 11project.
RoboCup Transfer is dedicated to the transfer of scientific findings and technical exper-
tise into everyday-life and the regional economy. The project is supported by the Bremen
Senator for Education and Science. Of particular interest is the integration of results
from the accompanying German Research Council (DFG) focus project 1125 titled ’Coop-
erating Teams of Mobile Robots in dynamic Environments’12 which concentrated on the
anticipation of intentions of agents located in the near range environment and own actions
derivable based on the aforementioned information. Due to the association with Robo-
Cup Transfer Virtual Werder acquired additional support and expertise from PHD-student
Andreas Lattner.

In 2005 Virtual Werder participated at the RoboCup in Osaka (Japan) with a new
code base that had been designed and written completely from scratch. This second
embodiment of the Virtual Werder 3D framework, even though it could not yet satisfy
the high expectations in direct comparison with the international competitors, helped to
generate valuable insights in the fields of MAS-architectures, knowledge representation
and controller design. It opened up new vistas and initiated the successful second complete
reimplementation of our framework that was due for the following year.

In 2006 Virtual Werder played its home game participating at the RoboCup 2006 in
Bremen (Germany). As mentioned in the motivation for this thesis the team’s performance
was quite noteworthy. This is not only reflected in the end result which was rank eight
out of 32 participants qualified for the 3D soccer simulation competitions. Virtual Werder
3D managed to complete the first three round-robin qualification rounds (19 games in
total) without a single goal against, winning five and reaching a draw in 14 games. While
the team was thus competitive as a whole exceptional performance could be attributed
to the defense13. The results at the RoboCup in Bremen showed that Virtual Werder
3D had run through a maturation process which had let to a situation where the team’s

11 Information about this project is available on a dedicated web site:
http://www.tzi.de/index.php?id=150&L=1&tx_projectdisplay_pi1[showUid]=118&cHash=674cf3ea90
(visited 18/08/2006)

12 Information about this project is available on a dedicated web site:
http://www.ais.fraunhofer.de/dfg-robocup/ (visited 18/08/2006)

13 In fact besides Virtual Werder 3D only two other teams managed not to receive a goal in the round-
robin phase: FC Portugal (rank 1) and ZJU Base (rank 2).
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code base was competitive on the national14 as well as on the international level thereby
achieving the initial goal formulated back in 2004.

Also in the wake of the championships in Bremen 2006 the team members began to
adopt a new view point upon Virtual Werder 3D and its code base. While until Osaka, the
main focus lay upon competitiveness in tournaments, the research aspect was shifted into
focus to a larger extent. At the time of writing, three additional diploma theses besides
the one at hand are in the making. A PhD thesis in the field of temporal pattern mining
in dynamic environments [Lat07] was also to a large extent motivated by the development
of the Virtual Werder team.

14 Virtual Werder 3D was the only German as well as one of the two European teams to reach the
RoboCup quarter finals.

http://www.robocup.org


3
Scenarios and Demands

The third chapter of this thesis is devoted to a specification of the demands on the concrete
approach for a spatio-temporal analysis of dynamic scenes which is used to obtain the
desired qualitative representation of a soccer game called for in the introduction.

First, section 3.1 introduces an exemplary set of possible scenarios which are likely to
be encountered frequently in similar fashion in regular games of the RoboCup 3D Soccer
Simulation League. These examples are provided in order to give the reader a coarse
idea of both actions including parameter values and game situation aspects which bear
relevance to the soccer game and shall therefore be recognized adequately by the proposed
analysis approach. Following the scenario presentation section 3.2 a comprehensive list
of general demands is compiled which constitutes mandatory constraints for the concrete
implementation of the desired analysis approach such as upper bounds for the acceptable
runtime duration for the processing required to advance the analysis a single analysis
step. In section 3.3 the prerequisites which need to be fulfilled in order to apply a
spatio-temporal analysis are highlighted. The desired concrete scope of the analysis with
respected to recognizable concepts is finally described in section 3.4.

3.1 Game Scenarios

In this section three short scenarios from the RoboCup 3D Soccer Simulation League are
presented and aspects of the respective dynamic scene which should be recognized by the
proposed approach to spatio-temporal analysis are highlighted.

3.1.1 Attempted High Cross Pass, Leading to Fight for Ball

At the starting point of this scenario outlined in figure 3.1 the game is in play mode
’playon’ which corresponds to ’normal course of the game’ as opposed to a set situation
such as a free kick. The ball is located on the left-wing side (from team A’s point of view)
and close to the half-way line. While rolling slowly into team B’s half of the soccer field
the ball is currently free. A player from team A is approaching the ball. This player is
closer to the ball than the players of team B. Eventually the player and the ball meet and
the agent receives the ball thus gaining exclusive ball control. The player circles around

15
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Figure 3.1: Schematic Overview for the cross pass scenario.

the ball in search for a suitable pass target while remaining in ball control. Since the
left wing is covered dense by the players of team B while the right wing is only sparsely
occupied the player decides to initiate a change of wings. In order to perform a cross pass
to a fellow player waiting beyond the center circle on the right wing he initiates a ball
transfer by kicking the ball high along the half-way line with considerable force. The ball
is leaving ground and over-flies two players from team B that are located not far from
the center spot. Eventually the flight trajectory nears an end, the ball touches the ground
again while still rolling with noteworthy speed. The fellow player from team A approaches
the ball. He is not alone since an adversary player is also already very close to the ball
and approaching it. Both agents manage to meet the ball at the same time immediately
engaging in a fight for exclusive ball control. The pass attempt has thus been baffled by
the quick reaction of team B. While before the pass team A was clearly in ball control
the situation know first has to be resolved either by a retreat from the ball from either of
the combatants engaged in the tackle or by another kick of the ball. So long the tackle
continues.

3.1.2 Tackle Resolution followed by Successful Dribbling

The scenario described above continues as outlined in figure 3.2. The tackle goes on for
a while before finally the agent from team B can initiate a kick which rebounds from the
other combatant yet rolls on ground level in a direction advantageous for the player from
team B. While the player from team A is confused, the kick initiator approaches the ball
which has been kicked with only little power in order to resolve the tackle. The player
meets the ball and performs a ball reception thus gaining exclusive ball control. From
a global point of view the ball control thus is conquered by team B. Since the agent is
an attacker and the foremost among his fellow players there’s no suitable pass partner
and the agent initiates a self assist where the ball is played steep with a lob. The agent
immediately follows the ball receiving the ball again. During the whole self assist the ball
remains close to the initializing player. The player repeats the self assist action. The
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Figure 3.2: Schematic Overview for the tackle resolution and dribble scenario.

sequences of those self assist constitutes a dribbling towards the adversary goal by this
player which is not interrupted by adversary players from team A.

3.1.3 Scoring Attempt Baffled by Adversary Goal Keeper

The previous scenario described a dribbling of a forward player from team towards the
adversary goal over the left wing. While still performing the dribbling action the player
eventually reaches a position from which a score attempt is feasible (cf. figure 3.3). Since
defenders from the enemy are rapidly closing in on the player he decided to initiate a score
attempt while this is still possible due to the fact that he exerts exclusive ball control.
Since the player is still relatively away from the goal for a score attempt he kicks the
ball with full power and medium height in order to avoid a collision of the ball with the
forthcoming adversary defenders. The ball flies over the adversary defense towards the
goal. The adversary goal keeper reacts and performs a reposition action. When the ball
is very close the keeper successfully catches the ball. Thus the score attempt is baffled
by the adversary goal keeper.

3.1.4 Discussion

The scenarios above have been presented intentionally in the style of a live radio broad-
cast as the latter is a good example for a qualitative real-world simultaneous description
of the dynamic scene unfolding during a soccer match which actually works quite well
for the most part of the listening audience. Due to the highlighting of those pieces of
information which should be recognized by the analysis for whom the demands to be
fulfilled are unfolded throughout the remainder of this chapter it becomes apparent that
an important subset of a complete scene description is compiled. At the same time the
scenario descriptions also give hints as to which concepts are subject of future work on
the way towards a complete scene description.

http://www.robocup.org
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Figure 3.3: Schematic Overview for the score attempt scenario.

3.2 Demands on the Spatio-Temporal Analysis

An important goal with mandatory character for the analysis approach developed in this
thesis is unconfined applicability either by the Virtual Werder 3D soccer agents or by
the Virtual Werder 3D coach [BKN+04, KLP+05, LPR+06] during the course of regular
friendly matches against befriended soccer teams provided by other universities.

Several important issues arise from the desire to perform an online analysis which con-
stitute important demands outlined below.

3.2.1 Adequate Performance for Online Application

To start with, the analysis needs to operate as intended while the duration of a single
analysis step is bounded by well-defined temporal constraints that arise from the mode of
operation of the RoboCup 3D Soccer Server.

Under normal circumstances1 soccer agents in the RoboCup 3D Soccer Simulation
League are provided with sensation messages which contain an egocentric vision as well
as setup/game state information every 20 simulation steps where each simulation step
accounts for 10 milliseconds of simulated time. In an average simulation environment as it
can be found both in RoboCup competitions and in our team’s laboratory the processing of
a server message received by the agent2 can be accomplished in about two simulation steps.
This assertion applies to the standard Virtual Werder 3D soccer agent as of November
2006 which is essentially an accelerated version of the agent used during the RoboCup
2006 championships and still relies on a simple, classic knowledge base without an explicit
qualitative layer [LRS+06, pp.13].
1 standard configuration of the server
2 the processing task entails the parsing of the server message string, the integration of the resulting

worldstate perception and the last worldstate observation into a new current observation and the
precalculation of the progression of the simulation in the immediate future (three simulation cycles
where each cycle has a duration of 20 simulation steps)
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When the spatio-temporal analysis of the soccer scene is performed in order to update
the qualitative representation following the completion of the standard knowledge base
update additional simulation steps will be required.

The theoretical effective upper bound for the analysis computation time is specified
by the duration of the server simulation cycle and the fraction thereof already consumed
before analysis start. However in order ensure the competitiveness of the agent the analysis
actually needs to be performed in only a fraction of the remaining maximum number of
simulation steps thereby making sure enough time is left to perform the regular reasoning
and acting duties. Typically, the above-mentioned Virtual Werder 3D agent can perform
a complete reason-act operation within a single simulation step.

Due to the time/communication model of the 3D Soccer Server it is possible for each
agent to reason and act more than once within a single simulation cycle if there is enough
time left in the cycle to do so. This modus operandi is reasonable as it allows the agent
to obtain additional timing information from the server between consecutive worldstate
messages and thus to schedule and execute actions within a simulation cycle with high
accuracy. Especially in situations where an agent handles the ball, it can be advantageous
first to start acting as soon as possible after a complete knowledge base update and to act
multiple times in succession in order to achieve the desired overall effect for the actions
performed within the current simulation cycle. If a bigger fraction of the simulation cycle
remains for reason-act this means the agent can either reason more deeply or more often.

Due to this fact the complete update of the agent knowledge base including the quali-
tative layer should be completed with at least half of the simulation cycle left for normal
operation within the soccer game. Thus the fact that an analysis of the dynamic scene is
applied by the agent is likely not to interfere with the character and quality of the agent’s
performance due to its time complexity. It also leaves a certain temporal buffer in order
to handle situations where either the current state of the game demands more intensive
computation as compared to the average processing or the soccer simulation is performed
on less efficient simulation environments.

It is a major goal of this work to show that spatio-temporal analysis of dynamic scenes
is feasible under these circumstances.

While the evaluation of the time complexity of the spatio-temporal analysis of soccer
scenes in the context of the RoboCup 3D Soccer Simulation can be performed based on
the simulation time that is consumed in each step due to the fixed simulation environment
as specified for the thesis evaluation in section 7.1 on page 123, with regard to a desired
future transfer of the developed analysis into further real-world application domains, it
is also compulsory to obtain additional data about the time complexity measured in real
system time (milliseconds) per analysis pass.

3.2.2 Feasibility in Realistic Game Situations

The feasibility of the approach to spatio-temporal analysis of soccer scenes developed in
this thesis should be proved in realistic game situations like those encountered during reg-
ular RoboCup championships rather than in well-prepared lab scenarios. While especially
crafted, simplified test scenarios are imperative in order to evaluate parts of the analysis
system during the development stages the final test scenario should feature two complete
teams each consisting of 11 players. The matches are to proceed using the normal set of
soccer rules and server parameterization which comes as a default with the 0.5.x series of
the RoboCup 3D Soccer Server. The rationale for this decision is twofold. Proof can be
acquired that the analysis may be applied by a whole team of eleven soccer agents while
playing a normal game of simulated soccer without significant performance disadvantages.
Thus once the thesis is completed the results thereof are appropriate for a technology
transfer into the main development line of the Virtual Werder 3D multi-agent-system
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Figure 3.4: Schematic overview of the distinct task areas touched by spatio-temporal
analysis and reference to generated data.

(MAS) as described in [LRS+06].

3.2.3 Handling of Incomplete and Noisy Sensor Input

In the introduction to this thesis (cf. section 1.1 on page 1) it was already mentioned that
in the 0.5.x series of the RoboCup 3D Soccer Server the soccer agents are equipped with
a restricted field of vision and sensor readings are normally distributed to a certain amount
around their true value by the server thus simulating a certain inaccuracy in the positional
sensor values obtained with the server messages. Both measures have been introduced to
the server in order to obtain a simulated environment which features increased realism by
confronting the agents with problems which are drawn from real-life counterparts.

In the desire to supply the Virtual Werder 3D agents with an acceptable hybrid knowl-
edge base the existence of both incompleteness and noisiness of sensor data needs to
be acknowledged and explicitly addressed in the development of the proposed approach.
The spatio-temporal analysis of soccer scenes used to maintain the qualitative knowledge
base part needs to work in an acceptable fashion both in a simplified scenario where vi-
sion is complete and unaltered and a real-life scenario where the standard conditions to
be encountered during RoboCup championships. Thus the analysis needs to be robust
and provide stable results. The assumption which can hopefully be proven in the the-
sis evaluation is that the decrease of analysis quality without perfect perception is mild
where quality needs to be evaluated along at least two dimensions: overall recognition of
concepts and suitable temporal classification of those recognized concepts.

3.3 Prerequisites for the Analysis Application

This section discusses the prerequisites which need to be fulfilled in order to apply the
concrete spatio-temporal analysis. The prerequisites refer to both the required set of
raw input data (cf. section 3.3.1) and the preprocessing which is to be performed in
order to obtain a qualitative input suitable for further use (cf. section 3.4, upper-left
part). The decision for an early transformation from quantitative raw data to qualitative
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ground predicates is motivated in the light of the aforementioned general demands (cf.
section 3.3.2).

3.3.1 Availability of Suitable Input Data

General Information: Simulation and Game State

The following set of information needs to be provided with regard to the course of the
simulation and the respective game of soccer simulated therein:

1. The discrete simulation time which is measured in the number of simulation steps
since simulation start

2. The game time measured in seconds which indicates the simulated time already
played in the respective soccer match

3. The play mode information which indicates the current state of the soccer game3

Information about Objects on the Soccer Field

For the spatio-temporal analysis information about the movable objects acting in the
simulation is required while information about stationary objects such as flags or goal
posts are neglected for the time being.

It is expected that for each movable object the following pieces of information can be
provided:

1. the object type which can be either ’Ball’ or ’Player’

2. the allocentric, absolute position of the respective object on the field which is
represented in three-dimensional Cartesian coordinates. The position is measured
in meters.

3. the velocity of the respective object which is represented in three-dimensional Carte-
sian coordinates where the length of this vector signifies the object’s position delta
since the last simulation cycle. The velocity is thus measured in meters/sim-cycle.

For players the information given above is not sufficient and thus additional data needs
to be provided:

1. Information about the agent’s team membership. This is provided both by a play-
half indication which states whether the player’s team is playing on the left or right
half of the soccer pitch4 and the name of the team.

2. The tricot number which unambiguously identifies the player within his own team.
The tricot number bears additional information as in the current setup of the Robo-
Cup 3D Soccer Server, the player with the tricot number one is automatically the
respective team’s goal keeper5

3 At this point it should be mentioned that the fact that play mode information can be directly accessed
is convenient from the analysis point of view. If the play mode was not accessible directly due to its
significance for the analysis itself an inference of the play mode based on the location of the ball, last
ball contact etc. would have been necessary [Mie04a, pp.120].

4 In the RoboCup 3D Soccer Simulation League the teams do not switch sides for the second half of the
game.

5 The reason for this fact is that a decent differentiation of player types within a team where each player
type is equipped with a certain set of capabilities such as the ability to catch the ball within a certain
area (for the goal keeper) is subject to future development of the RoboCup 3D Soccer Server.
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In section 3.2.3, it is specified as a demand that the spatio-temporal analysis is applicable
both in a test scenario with complete and accurate sensor data and with a realistic scenario
where the sensor data is incomplete due to restricted agent vision and where noise is
inserted by the soccer server in order to decrease the sensor quality.

In order to compare the results of the analysis approach in both scenarios it should be
possible to have access to two sources of data that both describe the same soccer game.
The data which is provided from the first source should be complete which means that
accurate information about all movable objects on the soccer pitch is available at all times.
In order to obtain data of such quality an additional coach agent needs to be introduced
into the simulation which is equipped with perfect vision sensors. The data which is
provided from the second source may be incomplete which means that not all movable
objects are necessarily visible all the time and less accurate sensor values are provided.
However for an object which is actually within vision range, the set of information should
be complete if not necessarily accurate. This kind of data can be obtained directly from
the Virtual Werder 3D agents which actively participate in simulated soccer games.

3.3.2 Qualitative Abstraction of Raw Input Data

Qualitative Ground Predicates

During the first step of the spatio-temporal analysis a suitable set of qualitative ground
predicates should be generated from the quantitative raw data.

The concrete set of required predicates is given below. While the first five predicate
types describe the motion situation of single movable objects on the soccer field, the
following predicate types describe aspects of the motion situation of two movable objects
respectively which are considered in relation to each other.

• the velocity of a movable object

• the acceleration behavior of a movable object

• the motion direction of a movable object

• for the ball the vertical_position which indicates whether the ball is airborne or
located on the ground

• for the ball the vertical_trend which indicate whether the ball is rising in the air
(due to a kick or bounce effect), is stable with respect to its height above ground
or is falling towards the ground.

• the distance between two movable objects

• the distance trend for two movable objects

Rationale for Early Qualitative Abstraction

The utilization of qualitative ground predicates in general as starting point for further
analysis steps as opposed to a direct use of the original quantitative raw data can be
motivated in different ways.

A sequence of quantitative raw observations which contains for the most part position
and velocity information for each of the 23 movable objects normally found on the soc-
cer pitch in the RoboCup 3D Soccer Simulation League constitutes a massive collection
of data which is not feasible to process under real-time constraints as formulated in sec-
tion 3.2.1 in a spatio-temporal analysis approach. This statement can not only be justified
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with a reference to the total amount of raw data for each new observation but also with
the fact that even though a comprehensive set of information may be contained within
the raw data the information is for the most part stored in an implicit way. Thus the need
for a complex data retrieval contributes to prohibitive computation costs.

Therefore the transition to a qualitative representation should be performed as early
as possible in a preprocessing step before the actual analysis. In doing so a significant
decrease of data which needs to be processed further can be achieved while the rep-
resentation of the dynamic scene based on qualitative predicates still bears a suitable
expressiveness for the analysis system.

The concise character of the representation is to some extent due to the capability
of qualitative predicates to represent dynamic concepts such as aspects of the motion
situation of single or groups of movable objects in a scene that possess a natural dilation
in time. For example it is easy to express the fact that an adversary player is drawing
closer to the agent of the own team currently in ball control for 5 simulation cycles so far.

Due to its qualitative character the representation introduces a suitable symbolic ab-
straction from concrete quantitative values. An appropriate example is the symbolic repre-
sentation of distances for two movable objects in the domain of simulated soccer. While in
a quantitative representation the numerical value for the distance usually changes contin-
uously the qualitative representation can deliver the information that the objects are close
and approaching each other eventually leading to a situation where both objects meet.
While the relevant information is preserved the symbolic values demonstrate stability with
respect to their temporal validity.

Given a suitable, robust method for the generation of qualitative ground predicates
the symbolic values are also less susceptible to noise. This is an noteworthy argument
especially with respect to the demand specified in section 3.2.2 to develop an analysis
approach which is feasible in real-life scenarios where noisification of positions and the
dependent velocities pose serious problems which need to be addressed. If this problem
is addressed as early as during the generation of qualitative ground predicates the actual
spatio-temporal analysis of dynamic scenes which is applied afterwards can safely ignore
the presence of noise contained in the quantitative raw data.

Implementation of a Focus Strategy

When a human is actively engaged in a game of real world soccer it can be observed that
he/she is not interested in all regions on the soccer field for each moment of the game with
a uniformly distributed intensity. During the whole course of the game he concentrates
especially on certain regions on the field such as the dynamic region around the ball or
his immediate neighborhood on the soccer pitch. He may also decide to keep an eye on
those players which for some reason bear a special interest. Such a special interest may be
given as a consequence of the observing player’s position and his role on the field (consider
1on1-covering as one such example). It may also arise due to outstanding capabilities of
certain adversary players for whom it would be fatal to leave them unobserved even for
short amounts of time. To conclude humans apply focus strategies in order to concentrate
on important aspects of the soccer game with respect to their own performance. The
analysis system proposed in this thesis should adopt this behavior in order to reduce the
computation load for each new analysis step. Qualitative basis information should be
generated in a preprocessing step to act as immediate analysis input data only for those
objects which are currently focused and thus considered relevant.
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3.4 Scope of the Spatio-Temporal Analysis

This section outlines the desired scope of the spatio-temporal analysis. First the set of
composite qualitative predicates is introduced. Afterwards the remainder of the section
continues with a presentation of both the basis actions and composite actions to be
recognized on the basis of the composite qualitative predicates (cf. figure 3.4, upper-right
part).

3.4.1 Recognition of Composite Qualitative Predicates

Based on the qualitative ground predicates which have been illustrated in section 3.3.2,
p. 22 a rich qualitative description of the situation context within a running soccer game
should be provided by means of composite qualitative predicates. In order to obtain predi-
cates of this kind the low-level description of the respective dynamic soccer scene at hand
needs to be exploited and conclusions need to be drawn based on the temporal relation of
sets of qualitative ground predicates where the character of the temporal relation is not
constrained per se. Examples for possible temporal relations are amongst other simply an
isochronic appearance of certain qualitative ground predicates or, generalized, the appear-
ance thereof in a certain chronology which can entail concurrency, sequential occurrence
and interlacing.

The composite qualitative predicates which should be subject of the analysis encompass
situation descriptions which reflect durative aspects of the game context such as the state
of the game with respect to ball control. They also encompass game-relevant events such
as the ball reception of a certain player or a retreat from the ball which can also imply a
retreat from a tackle situation. The latter two groups of composite qualitative predicates
are within primary focus and are thus subsequently discussed in more detail.

Events

As events which can be identified by the analysis approach possess a dual functionality first
to provide relevant information in their own right and second to enable the recognition
of actions which is described in the following section 3.4.2 the concrete set of relevant
events which actually need to be recognized is geared to the requirements for the latter
mentioned further analysis.

Ball Reception by a single player or a group of players (cf. section 3.4.2, p.25)

Kick of the Ball again by a single player or a group of players (cf. section 3.4.2, p.25)

Tackle Engagement where a single player starts a struggle for ball control in engaging
a player that previously controlled the ball exclusively or engages in an ongoing
struggle for ball control which already involves multiple players

Ball Retreat where an agent gives up its ability to control the ball, thus either retreating
voluntarily from a struggle for ball control (without the ball being kicked) or leaving
the ball alone entirely, potentially in order to transfer the responsibility to build up
the game to a teammate
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3.4.2 Recognition of Actions

Recognition of Basis Actions

With regard to the scope of the action recognition ball-centered basis actions constitute the
primary focus for development and implementation in the context of this thesis. Common
to all ball-centered basis actions is that they are initialized by either a single or a group
of players on the soccer field by means of a ball kick event. Furthermore these actions
are characterized and referred to as basis actions due to the fact that for each respective
action there is only a single entity which plays the role of the active action initiator. Basis
actions cannot be decomposed into simpler sub-actions which is the case for the action
sequences described in section 3.4.2. The incremental recognition process for a concrete
ball-centered basis action should eventually (in the context of this thesis towards the end
of the action) lead to the one of the following conclusions

Pass The ball has been passed successfully or has been lost due to a failed pass.

Clear The ball has been cleared either into a free area on the soccer field or outside the
soccer field where the resulting play mode change allows to determine the exact
characteristic of the respective clearing effort such as clearing to the side (adversary
kick-in) or to the back (adversary corner kick).

Score The ball has been shot in order to score a goal. The score attempt has been
successful or not where in case of failure an appropriate differentiation should clarify
if the shot missed the goal, the shot has been caught by the adversary goal keeper
or the shot has been baffled by an adversary player.

Self Assist A player has successfully performed a self assist.

FightDissolve The ball action has brought an end to a situation where players from both
teams were engaged in a fight for the ball. The fight could either be dissolved
successfully since the ball has been received by only one team or cleared to a standard
situation. Another possibility is that the fight for the ball continues immediately at
ball reception with a new set of engaged combatants.

Handling of Ambiguities

In the RoboCup 3D Soccer Simulation League situations frequently occur where a group
of players, either due to a fight for the ball or disaccord with respect to the responsi-
bility for the ball, commonly exerts control over the ball. The analysis approach should
handle consistently situations where a ball-centered action is obviously initialized originat-
ing from such an ambiguous situation where it is impossible to determine with certainty
which amongst the possible players initiated the ball transfer. The following scenarios are
possible:

1. The ball has been kicked by a particular player in such a way that it immediatly
bounces off the body of a second player before leaving the sphere of influence of
the player group.

2. The ball has been kicked by more than a single player. All players have kicked
virtually at the same time.

3. The ball has been kicked by only a single player amongst those that actually had the
opportunity to initiate a kick. The other player were not involved in the particular
action.
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The problem which has been discussed above for kick initiation applies in a similar
fashion also to the reception of the ball. A consistent approach to the handling of such
ambiguous ball situations should avoid a solution which on first thought seems to suggest
itself and is pursued in other approaches to action recognition such as [Mül02] or [Mie04a]
where based on the conclusion that more than a single player might have initiated an action
it is assumed by default that all players have actually deployed their opportunity to do
so. Such an approach leads to an attempt to recognize several ball-centered basic actions
where only a single action has actually been initialized. The solution which is favored
instead for the analysis proposed in this thesis is to allow actions to be initialized by
single agents as well as groups of agents. Those groups may be both heterogeneous or
homogeneous.

Recognition of Action Characteristics

As already mentioned in section 1.2 on page 3, an important demand is that the recognition
process for a concrete basis action that has just been triggered already yields a useful, yet
due to the early stage of action execution possibly incomplete characterization. The part
of the characterization which should be available right from the start of the recognition
process for the respective action entails a differentiation in which way the ball has been
kicked.

A suitable description of the individual kick style that should be provided by the analysis
comprises the following aspects:

1. The direction of the kick. In a soccer game it makes sense to differentiate between
backward kicks, cross kicks, diagonal kicks and steep kicks.

2. The kick style with respect to the flight trajectory. A ball may be kicked on ground
level, medium or steep.

3. The kick may be performed with low, medium or full strength.

With a combination of the above mentioned characteristics it is possible to describe
special kicks such as lobs6. Eventually a pass can be characterized as for example a long
lateral pass which is conducted on ground level.

Recognition of Action Sequences

The analysis should be able to recognize not only basis actions but also composite actions
which can be thought of as action sequences. The recognition of those sequences should
be based on the recognition of the basis actions described above. A mandatory demand in
this context is that while the concepts to be recognized become more complex the actual
recognition thereof remains tractable by exploiting what has already been recognized so far.
This means that the recognition of an action sequence directly relies upon the recognition
of the constituent basis actions.

Concrete action sequences to be treated comprise:

Extended Dribbling of the ball by a certain player. The complete dribbling consists of
single atomic dribblings performed in sequence by that player.

OneTwo Pass also called give’n’go pass as an example for the handling of a so-called dyad
or multi-player combination where more than one entity7 actively kicks the ball. A

6 in German: ’Heber’ or ’Lupfer’
7 in this special case a single player
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onetwo pass can be performed in straight-forward where the second pass by the
receiver of the first back to the initiator of the first pass is performed without the
second player performing any further basis action. A onetwo pass may also feature
a short dribbling by the first receiver before the ball is passed back.

Extendibility towards Play without Ball

Non ball-centered basic actions bear a noteworthy relevance in the RoboCup 3D Soccer
Simulation League. This class of basic actions which entails for example man-for-man
marking or participation in the setup of an off-side-trap have not been considered in
section 3.4.2. However the analysis should be capable in principle to support this class
of actions even though they are not in the primary focus. An introduction of non ball-
centered basic actions should not require principal changes to the way the analysis works.
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4
Spatio-Temporal Analysis of Dynamic Scenes

The fourth chapter of this thesis is devoted to a survey of related research in spatio-
temporal analysis of dynamic scenes and qualitative knowledge representation. The survey
concentrates on approaches which have been applied in sport application domains which
are characterized by swift, dynamic changes to the respective situations and a large number
of relevant scene actors. The domain of robotic soccer is given special treatment with a
survey of research recently compiled by the RoboCup research community. Also, several
research efforts located in the area of sports analysis are reviewed covering both soccer
and American Football as featured team sports.

The chapter is concluded with a discussion of the approaches outlined in the survey
with regard to the demands which have been defined previously in chapter 3. This is done
in order to identify both ideas and means which can be either directly applied or used as
a starting point for the development of the approach proposed in this thesis.

4.1 Review of Related Research

4.1.1 Spatio-Temporal Analysis of Dynamic Scenes

At the Center for Computing Technologies (TZI) at the University of Bremen, Andrea
Miene developed a comprehensive approach to Spatio-Temporal Analysis of Dynamic
Scenes in the context of her doctoral thesis1 [Mie04a, Mie04b] which was also picked up as
a central issue in several associated papers such as [MVH04, MV02]. In these publications
Miene presents a general analysis solution which is bound neither by applicability in only a
limited set of problem domains nor by certain scenarios for the utilization of analysis results.
The analysis rather seeks to provide a rich multi-tier qualitative representation of dynamic
scenes and explores ways in which such a representation can be constructed starting from
low-level sensor values. For the concrete theoretical development and the prototypical
implementation of her analysis Miene chose the RoboCup 2D Soccer Simulation League
as demanding realistic application domain, stating however that domain alternatives such
as cell tracking or driver assistance systems are also feasible [Mie04a, p.2]. In order to
1 Author’s Note: The doctoral thesis was written in German. The title thereof has been translated by

the author for the sake of better understanding. The original title is: Räumlich-zeitliche Analyse von
dynamischen Szenen (cf. [Mie04a])
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Figure 4.1: Schematic overview of Miene’s processing pipeline from quantitative raw data
until qualitative ground predicates. [MLVH04, p.3]

demonstrate the functionality of the implementation, simple human-readable log reports
were generated where the recognized aspects of the dynamic scenes were used to maintain
a simple qualitative description of the course of simulated soccer games. It should be
noted however that the logs are primarily intended as a human-readable feedback from
the analysis system rather than as fully-fledged automated commentaries in the tradition
of ROCCO/SOCCER (cf. section 4.1.3 on page 37) or MIKE2 [TNF+98].

An important contribution of Miene’s approach is the emphasis upon the investigation
and interpretation of both the spatio-temporal movement situation for single movable
objects in a scene and, even more important, the movement situation which results from
the spatio-temporal relations between arbitrary groups of movable objects.

Miene uses monitor log-files from the RoboCup 2D Soccer Server [NMHF97] as raw
input for her analysis. With regard to a rating of the character of the input data the
analysis is prepared to accept, it is important to understand that these monitor log-
files provide the exact Cartesian position of all movable objects within the simulation
environment for each discrete moment in a soccer game [CNO+02]. Thus, the analysis
developed by Miene is designed to build upon complete information which is of high
quality with regard to accuracy of the position values within the bounds of the simulation
environment. An adoption of the analysis to incomplete input data remains subject to
future work.

The first step in the analysis is a qualitative abstraction of the raw input into a set of
qualitative ground predicates describing continuities which occur either in the motion of
single objects, such as velocity and heading, or in the spatial relation between pairs of
objects, such as distance and heading. Due to their respective temporal dilation these
predicates feature a validity interval and they are referred to by Miene as Object Motion
Intervals (OMI) and Spatial Relation Intervals (SRI) [MV02, p.3]. Both OMIs and SRIs
are obtained incrementally in a multi-tier process, as raw data for successive moments in
time is ingested and handled by the analysis algorithm (cf. figure 4.1).

In a first step the raw data which is interpreted as a set of time series each repre-
senting the quantitative value run of a certain movement aspect over (discrete) time is
pre-processed, where these movement aspects comprise amongst others object velocities,

2 Abbrev.: Multi-agent Interactions Knowledgeably Explained
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velocity bearings, inter-object distances. The time series are subjected to a series of trans-
formations such as gradient smoothing and removal of single runaway values in order to
compensate errors in the sensor readings. Using these means the time series are put in
a suitable shape such that they can be used in the next processing step where both a
monotonicity and a threshold-based segmentation of the time series data into intervals is
performed.

Miene motivates the use of both segmentation methods with the notion that a mono-
tonicity based segmentation is well suited in order to capture value trends such as object
acceleration/deceleration or approach/retreat, while a threshold-based segmentation cap-
tures value states such as the distance between objects. The segmentation process is
executed automatically, driven by a numerical parameterization which is tuned to the
characteristics of each respective time series. Up to this point in the processing pipeline
no domain-specific semantics is attributed to the generated intervals. In applying this
course of action Miene establishes a clear distinction between a.) the segmentation- and
b.) the interval classification phase.

The classification is the last step which needs to be executed in order to obtain OMIs and
SRIs. The classification allows for an interpretation of the numeric interval descriptors such
as the average value of an threshold-based segmented interval as member of a symbolic
and thus qualitative class. The domain-specific specification of the respective class layouts
is performed manually based on established formalisms for qualitative descriptions for
spatial relations [CH01], distances [HCDF95] and directions [Her94].

Starting from the set of qualitative ground predicates, Miene’s analysis approach strives
to derive more complex correlations which require the examination of multiple constituent
predicates. In her analysis approach Miene explicitly addresses the recognition of compos-
ite situation properties, events and actions that are performed by the actors in a scene,
following the conceptual distinctions introduced by Allen in [All84].

The basic concept of Miene’s approach to recognize complex entities relies upon two as-
sumptions. First, complex concepts can be described in terms of simpler concepts with a
certain temporal entanglement thus constituting a characteristic temporal pattern (cf. pat-
tern 4.1 and pattern 4.2 for example patterns). The pattern is a generalized description
of the respective concept which corresponds to the required common denominator of ac-
tual instances of the concept occurring in dynamic scenes. It can be compiled manually
by a domain expert due to the fact that the standardized, pattern-based description of
concepts such as domain-specific actions is not artificially crafted for the analysis’ sake
but reflects the way an expert thinks about actions. The second assumption is that the
declarative formalism which describes the concept patterns is flexible enough to subsume
the by far largest part of concrete concept instances that occur in typical dynamic scenes.
Thus, once a pattern such as pass has been assembled with necessary care it should be
suitable for all concrete pass flavors regardless of parameters such as the respective sit-
uation, the acting team or the mode of play. So while the first assumption states that
complex concepts can – in principle – be described in terms of their internal composition,
the second assumption states that concrete concept blueprints can indeed be constructed,
that actually apply without restrictions in actual dynamic scenes.

Miene does not restrict the type of constituents which are used in the specification of a
composite concept pattern. For example, in pattern 4.2 both actions (OCCURRING(. . .))
and situation properties (HOLDS(. . .)) are used to specify the one-two pass pattern. This
fact bears special importance since it allows a hierarchical organization of concept patterns
as opposed to a flat organization. For the description of higher-order concept patterns
other concept patterns of lower order can be immediately reused. Thus, while the com-
plexity of the entities described by the concept patterns grows, the complexity of the
pattern description is kept low, as, in a natural way, higher-order concepts are described
on a suitably high level of abstraction. This can be exemplified with Miene’s definition of
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Motion Pattern 4.1 Concept Pattern for a successful pass from player p to q. [Mie04a,
p.103], translated from German

OCCURRING(Pass(p, q), i)⇔ ∃h, j :

OCCUR(Kick(p), h)
∧ HOLDS(BallControl(p), i)
∧ OCCUR(Reception(q), j)
∧ InOrEquals(h, i)∧ FinishedByOrEquals(i, j)
∧ Team(p) = Team(q)

Motion Pattern 4.2 Concept pattern for a one-two pass between players p1 and p2. [Mie04a,
p.104], translated from German

OCCURRING(OneTwo(p1, p2), i)⇔ ∃ j, k, l :

OCCURRING(Pass(p1, p2), j)
∧ HOLDS(BallControl(p2), k)
∧ OCCURRING(Pass(p2, p1), l)
∧ Meets( j, k)∧ FinishedOrEquals(l, k)∧ Starts( j, k)∧ Finishes(l, i)

the one-two pass pattern (pattern 4.2) which is constructed on the basis of two separate
simple pass actions.

The temporal entanglement of constituent concepts within a concept pattern is ex-
pressed in terms of the possible interval relations which have been proposed by Allen [All84,
All83, AF94] and Freksa [Fre92] in their respective research in the area of qualitative tem-
poral reasoning, allowing for pattern descriptions which encode some flexibility as to the
concrete temporal predicate configurations. This abstract representation constitutes a
key-factor in order to obtain the required generality of concept patterns for a sufficient
coverage of concrete concept instances.

Miene demonstrates the scalability of her analysis approach with respect to the recogni-
tion of complex situations where multiple actors are involved with a treatment of off-side
situations in simulated soccer [MVH04].

Due to the character of the recognition concept outlined above the analysis is retro-
spective in character. This means that the occurrence of concept instances is stated a
posteriori whenever a complete concept instance that occurred in the currently considered
time frame is matched successfully against a certain concept pattern. Thus, an early re-
cognition of partially completed action instances is laborious as the concept pattern for
the respective complete action would need to be broken down into sub-patterns which
then could be recognized upon completion. Thus an incremental recognition of action
which are just about to happen is not supported immediately by the analysis.

Miene shows that her analysis approach can handle both domain-specific and domain-
independent concepts. The latter allude to general movement patterns such as movement
configurations (parallel movement, in-line movement, chase). Miene claims that, in sup-
porting domain-independence, her analysis can be easily adapted to new domains since
even in the absence of domain-specific semantics the general concepts still prevail.
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The analysis approach proposed by Miene is described as being suited for simultaneous
application due to the fact that the integration of raw input data associated with a new
set of sensor values provided by attached sensors is intertwined with the processing of the
recognition. Real-time capability is discussed briefly as theoretically possible. However this
claim is not substantiated further as concrete deployments of the analysis implementation
were performed offline as could be verified in a direct correspondence with Miene. While
the quality of the analysis was the primary subject of evaluation no notion was given as
to the runtime performance.

The basic approach proposed by Miene for the generation of qualitative ground predi-
cates from quantitative raw sensor data and the subsequent bottom-up recognition of com-
plex (domain-dependent) situation properties, events and (multi-agent) actions based on a
matching process between concept patterns and the qualitative description of the dynamic
scene at hand has been applied in the context of the ASKOF project3 by Gehrke et al. for
the qualitative representation and description of traffic scenes [MLVH04, GLH04, Geh05]
and tested for feasibility under real-time constraints in synthetic traffic scenarios with a
varying number of traffic participants. These tests showed that for a mapping interval of
100-150 milliseconds up to seven such actors could be handled without efficiency problems.
Beyond that number the scene analysis started to limp behind significantly with the effect
increasing with time of a simulation run which was attributed to the costs of interactions
with the knowledge base rather than the cost for qualitative abstraction. Due to the fact
that the number of traffic participants to be considered in the example scenarios was
relatively small in most cases the general approach was proven to be suitable for real-time
applications within certain bounds.

4.1.2 Behavior Recognition in the AT Humboldt

Jan Wendler considered the issue of behavior recognition in the context of his doctoral
thesis [Wen03] in which he proposes a novel method for the automatic modeling of
agent behaviors in complex multi-agent environments4. The approach comprises three
constituent aspects, namely the above-mentioned behavior recognition, the construction
of behavior models and the application of the assembled behavior models for the prediction
of agent behaviors.

For the concrete development and implementation of his behavior modeling approach
Wendler chose the RoboCup 2D Soccer Simulation League which he – in accordance with
Miene – characterizes as demanding, dynamic multi-agent environment. In the context
of this application domain Wendler’s behavior modelling approach suits an opponent
modelling purpose. Similar to other team sports the global performance of a (simulated)
soccer team is determined to a large extent by an adequate choice of team strategy.
However adequacy cannot be measured detached from a concrete game situation but
only in dependence of the respective counter strategy. The construction of an opponent
model is a means to enable agents to understand the adversary and automatically adopt
the team’s own strategy in order to increase competitiveness. Wendler suggests alternative
application domains such as robot rescue where behavior modelling is performed in order
to optimize the cooperation efficiency in agent groups.

Wendler distinguishes two phases which are relevant for an effective behavior recognition.
The first recognition phase is taking place offline and comprises the manual specification

3 ASKOF, ’Architektur und Schnittstellen für Kognitive Funktionen in Fahrzeugen’, was a preliminary
project at the Center for Computing Technologies (TZI) supported by the German Research foun-
dation, a dedicated web site is available at: http://www.informatik.uni-bremen.de/agki/www/grp/ag-
ki/projects/index.html?project=askof&site=short (visited:16/12/2006)

4 Author’s Note: The doctoral thesis is written in German. The original title is: Automatisches Mod-
ellieren von Agenten-Verhalten; Erkennen, Verstehen und Vorhersagen von Verhalten in komplexen
Multi-Agenten-Systemen

http://www.informatik.uni-bremen.de/agki/www/grp/ag-ki/projects/index.html?project=askof&site=short
http://www.robocup.org
http://www.robocup.org
http://www.informatik.uni-bremen.de/agki/www/grp/ag-ki/projects/index.html?project=askof&site=short
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Motion Pattern 4.3 Behavior Pattern for a pass from player p1 to p2. [Wen03, p.51]

pass(p1, p2, t0, tn, ballSpeed, playerMovement) : −

XBallControl2(p1, t0, t1) , ballFree(t2, t3) ,

XBallControl1(p2, tn, tn) , f ollow(t1, t2) , f ollow(t3, tn) ,

ballFastDeparting(p1, t2, ballSpeed) , teammateInKickRegion(p1, t2) ,

movement(p2, t2, tn, playerMovement) , sameTeam(p1, p2) ,

notSame(p1, p2) , VirtuallyPlayOn(t0, tn)

of relevant behaviors by a domain expert. In this context the term ’behavior’ relates both
to simple actions actively performed by a single player such as a pass (pattern 4.3) or
dribbling as well as to complex group actions such as the implementation of off-side
traps.

In order to make effective use of behavior recognition results in the construction of
behavior models Wendler claims that the common scheme to recognize only a sparse set of
behavior attributes such as the initiator/receiver, the basic behavior type and – optionally
– the success of execution for concrete behavior instances does not provide sufficient
expressiveness. Due to this fact Wendler proposes the recognition of additional behavior-
specific attributes that allow for a more precise characterization of behavior instances.
An interpretation of carefully chosen additional attributes allows for the classification
of a behavior instance as a distinct specialization of the basic behavior type. A suitable
example for this course of action is Wendler’s specification of the pass pattern that features
two additional descriptive attributes: the speed of the ball directly after the kick by the
pass initiator and the accumulated motion vector of the pass receiver during the whole
pass action (cf. pattern 4.3 → ballSpeed,playerMovement). Based on these attributes
Wendler demonstrates several possible pass distinctions which are not exclusive but rather
meant to complement each other. Thus, a pass can be played direct or indirect, as a
cross pass, backward pass, etc.

Wendler’s approach to behavior recognition relies upon the assumption that behavior
patterns can be described exclusively in terms of a gapless temporal sequence5 of con-
stituent qualitative ground predicates. An arbitrary overlapping of predicates cannot be
modeled directly. Wendler uniformly refers to the modeled predicates as events. It should
be noted that, contrary to the common notion of the term, Wendler’s events feature a
temporal dilation that can comprise either a single moment in the discrete time model of
the underlying simulation environment (instantaneous events) or a time period (durative
events). The denotation of the ground predicates as events can be misleading as for the
most part Wendler’s events describe situation properties such as exclusive ball control
rather than conventional events such as a kick of the ball. A description of complex be-
haviors such as dyads as a sequence of both simple behaviors and events is not intended
by Wendler. Due to this constraint the specification of complex behaviors does not scale
well as the basic vocabulary for the specification remains bound to ground predicates only.
This fact is exemplified by Wendler’s specification of pass (pattern 4.3) and one-two pass
(pattern 4.4). The latter pattern is bloated considerable, especially when compared to the
equivalent pattern by Miene (pattern 4.2, p.32). In Wendler’s approach behaviors which
have been recognized already have no value for the further recognition process.

For the second recognition phase which is executed automatically based on the specified

5 In the pattern declarations this requirement if enforced by the explicit meets(. . .) relations [All84]
called follows(. . .) by Wendler (cf. pattern 4.3)
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Motion Pattern 4.4 Behavior Pattern for a one-two pass between players p1 and
p2. [Wen03, p.79]

pass(p1, p2, t0, tn, bS1, pM1, positioningMovement, bS2, pM2) : −

XBallControl2(p1, t0, t1) , ballFree(t2, t3) ,

XBallControl3(p2, t4, t5) , ballFree(t6, t7) ,

XBallControl1(p1, tn, tn) ,

f ollow(t1, t2) , f ollow(t3, t4) ,

f ollow(t5, t6) , f ollow(t7, tn) ,

ballFastDeparting(p1, t2, bS1) , teammateInKickRegion(p1, t2) ,

movement(p2, t2, t4, pM1) , positioning(p1, t2, t5, positioningMovement) ,

ballFastDeparting(p2, t6, bS2) , teammateInKickRegion(p2, t6) ,

movement(p1, t6, tn, pM2) , sameTeam(p1, p2) ,

notSame(p1, p2) , virtuallyPlayOn(t0, tn)

behavior patterns Wendler proposes an object-oriented incremental recognition algorithm
for behaviors which can be applied in a real-time scenario by a dedicated observer agent
which possesses a complete and noise-free perception of the observed agents acting in
the simulation environment. In the concrete implementation, the behavior recognition is
performed online by the dedicated coach agent, observing the behavior of a single team of
soccer agents during regular matches in the RoboCup 2D Soccer Simulation environment.

In the object-oriented implementation each behavior pattern is represented by a single
recognition instance which is due to detect occurrences of the specified behavior over the
course of the game. Each recognition instance carries an internal state which indicates
the respective current state of the recognition process. Initially a recognition instance is
waiting for an initial match of the first element in the event sequence within the respective
world state. While no such match can be found the associated behavior is not happening.
When an initial match is found the recognition process is started as the match might be
a first hint that the behavior has been triggered. Thus the possible initialization of a
new behavior instance in the simulation is investigated. The recognition instance is now
pending. In order to fully trigger the concrete recognition of a new behavior instance in
subsequent processing steps further successful matches of world state and active event
in the event sequence need to occur until finally the initial event sub-sequence which
represents the complete behavior trigger has been processed. However if the matching
cannot be continued until the passing of the trigger threshold the recognition instance is
reset as the hypothesis with regard to the start of a new behavior instance is discarded.

After the recognition of the behavior trigger the remainder of the event sequence that
constitutes the behavior pattern is matched step by step until either the sequence could
be matched completely which corresponds to the recognition of a successfully executed
behavior instance or no further match can be found. In the latter case the recognition
algorithm tries to identify the reason for the mismatch. Upon success a new behavior
instance has been recognized which could not be executed successfully and led to a
certain undesired outcome. Otherwise the recognition instance is reset.

During the course of the recognition procedure the attributes which characterize the
respective behavior instance are allocated with values by and by during the whole recog-
nition of the behavior instance whenever sufficient data has been acquired. Thus early in
the recognition the characterization is fragmentary and grows more and more complete

http://www.robocup.org
http://www.robocup.org
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towards the completion of the recognition cycle.
The recognition algorithm developed by Wendler is designed to recognize only a single

instance of a certain behavior pattern at a time which is sufficient for the treatment of
ball-oriented behaviors in the soccer domain. By allowing only a single active behavior
instance at a time Wendler also implicitly handles the problem of multiple ambiguous
interpretations of the same behavior which could arise when the source of a kick initiating
a new behavior cannot be determined with certainty as more than a single agent might
have had the opportunity to act. The single-instance bears the drawback – convenient as
it may be for the considered application scenarios – that it cannot be immediately applied
for behaviors such as cover which may be executed by a significant part of a whole team
while in a defensive situation. For a closely related approach which implements a multiple-
recognition capability Wendler refers to the work by Müller [Mül02].

Wendler claims that the data associated with each moment in time is processed only
once during the whole recognition process in a sequential order. Also, the assignment of
the behavior parameterization occurs as time progresses. Thus both with respect to the
utilization of its input data and the recognition process as such Wendler’s approach has
an incremental character.

Due to the further application of his approach for the modelling of behaviors, Wendler
sets aside the compilation of a rich qualitative representation which comprises situation
properties, events and actions. Thus, while events and situation properties appear in the
description of behavior patterns, they are solely used as building stones for those patterns.
In the concrete implementation they are pulled immediatly6 from the quantitative knowl-
edge representation only when this is required by the world state – event matching process
outlined above.

Wendler evaluated the concrete implementation of the behavior recognition for seven
distinct behavior types7 with a series of test data-sets obtained from games played at the
RoboCup German Open 2001 both with respect to required computation time for each
processing cycle and recognition quality. The coach program was executed on an average
PC (400 MHz AMD CPU) and managed to complete the computation of a single recogni-
tion cycle in at most 1 millisecond. Wendler claims that the required computation time is
linear to the number of applied behavior patterns and hence concludes that the developed
recognition approach is suitable for unconfined real-time use. In regard to recognition
quality the first result with respect to coverage is that on average the recognition provides
results for roughly 98% of the overall game time. Wendler also tested for correctness
and completeness of the recognized behaviors based on a comparison between the results
provided by the implemented algorithm and a ground truth provided by the result of an
objective human examination of the applied test games. The baseline of these tests is
that, based on complete, noise-free input data, the recognition performance is comparable
to the human equivalent.

With respect to a possible application of his recognition approach for agents actively
participating in the observed soccer matches, Wendler concludes that, due to the restricted
and imprecise vision of players in comparison to the coach, a direct transfer of the proposed
approach is not feasible. He assumes that once behavior patterns are described in terms
of few compulsory events and otherwise optional events an application for soccer players
becomes an option. Other problems which might arise out of an reduced quality of the
input data due to sensor noise are not considered.

6 i.e. obtained via query functions
7 balltransfer, pass, dribble, score, clear,one-two pass and ’fight for exclusive ball

control’

http://www.robocup.org
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4.1.3 VIsual TRAnslator (VITRA)

In the research context of the CRC8 ’Künstliche Intelligenz und wissensbasierte Systeme’
funded by the German Research Foundation, Herzog and colleagues were concerned with
the development of knowledge-based systems, capable of the interpretation of visual input
(i.e. imagery from a dynamic scene) and a translation thereof in an appropriate natural
language description of ongoing events. The project was called VIsual TRAnslator (VI-
TRA) [HBG+96]. The desire to enable an automated soccer commentary system provides
a motivation for an incremental recognition strategy in contrast to a posteriori strategies.

VITRA was comprised of several sub projects one of which was concerned with the
automated generation of commentaries for short video broadcast sequences from regular
soccer games based on a high-level interpretation of the observable occurrences in dy-
namic soccer scenes. The system was called SOCCER [HG89]. While the research on
SOCCER was focused on the recognition of high-level concepts based solely on the ob-
servable geometrical flow in a dynamic scene an add-on project by Retz-Schmitdt, called
REPLAI9 [Ret92, Ret91], was focused on an interpretation of the recognition results pro-
vided by SOCCER, based on the assumption that soccer players are intentional agents
whose actions have a purpose in the respective context of the game.

SOCCER: Incremental Spatio-Temporal Analysis of Soccer Scene for Auto-
mated Commentary

In order to provide automated commentator capabilities for SOCCER, a major step com-
prises the interpretation of events on the soccer field using high-level scene analysis. The
desire to assemble real-time comments for player actions while the soccer game unfolds
implies special demands with regard to the recognition strategy and the availability of re-
cognition results for further processing. Since event recognition and discourse generation
are executed in parallel or at least intertwined it is mandatory that the discourse compo-
nent is supplied not only with information about completed actions but also about those
actions about to proceed. The rationale is that both discourse planning and, ultimately,
the utterances for the comments require a certain amount of time, such that if only com-
pleted actions were considered the discourse generation would start to significantly lack
behind the events on the field.

The incremental event recognition proposed by the VITRA group [Her95b, AHR88,
RHA87, HG89] is based upon event models which describe the a-priori expert knowledge
about the common structure of events, The core of each event model is a so-called course
diagram, a special, labeled directed graph where each edge of the graph is defined by a
tuple (source, goal, condition, type). An example for such a course diagram is
presented in figure 4.2. While source and goal of an edge refer to nodes in the graph
and define the traversal direction the edge condition is comprised of a conjunction of
sub-events in a specified state. If the conjunction is true, which means that the required
set of sub-events could be recognized for the respective discrete time step, the traversal
condition for the edge is satisfied and the recognition proceeds. A complete successful
recognition of a particular event occurrence in the soccer scene thus corresponds to an
individual complete traversal of the course diagram from the graph’s source node to the
goal node.

Herzog et al. state that, for an optimal further exploit of preliminary recognition results,
the common binary distinction between events that have occurred and those that have
not is insufficient [Her95b, AHR88]. Hence, they introduce an extended set of activity

8 Abbrev.: Collaborative Research Center, dedicated funding instrument of the German Research Foun-
dation

9 Abbrev.: ’REcognition of PlAns and Interactions’
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Figure 4.2: Simple course diagram for pass in the run action (reproduction of figure
in [RHA87, p.9]) and concrete sample traversal of course diagram.

states for events, namely :START10,:PROCEED,:STOP and a special state :SUCCEED for
durative events. In order to maintain information about the activity state of an event
during the recognition/traversal process the edges of the course diagram are typed with
one of the states introduced above. The type of the edge which has been traversed in
the current step thus indicates whether the respective event occurrence has just been
started, is still proceeding or has just been finished. The concrete event recognition task
consists of an instantiation of the predefined event models based on information about
the dynamic scene obtained from the SOCCER knowledge base. ”As soon as new input
data are provided [...] the recognition component continues traversing course diagrams
already activated and tries to trigger new ones.” [HG89, p.9]

It should be mentioned that course diagrams as introduced by Herzog et al. are designed
for the complete recognition of successful event occurrences. The premature abortion of
an event occurrence can be determined if for a certain time step the course diagram offers
no out-going edge from the currently occupied graph node whose traversal condition is
satisfied. This means that a course diagram disposes of only a single sink node for success
whereas failure conditions are not modeled. Thus, it is not possible to assert why an event
failed. Further research in that direction has been done by Cavazza and Palmer in [Cav00]
which propose the use of extended course diagrams with additional exception edges.

Herzog et al. propose an object-oriented implementation for their incremental recogni-
tion which for each recognition step applies a bottom-up strategy by starting with the
recognition of atomic events and progressing upwards in the event hierarchy which is
formed pragmatically by defining the level of each event model as one above the maxi-
mum level of any sub-event used in any edge condition [RHA87].

Herzog discusses the problem that the specification of an appropriate set of course
diagrams seems to be ’rather lavish’ in comparison with declarative interval-based concept
descriptions [Her95b, p.6] as in the approach by Miene (cf. section 4.1.1 on page 29) and
identifies the following problems. First, a declarative description such as figure 4.3 is easier
to comprehend for the knowledge engineer. Second, course diagrams are not particularly

10 also referred to as :TRIGGER in publications other than [Her95b]
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(de f event PENALTY_KICK(p ∗ playerg ∗ goalkeeper)

:subconcepts
RUN_UP(p)[I1], SHOOT(p, b)[I2], MOVE(g)[I3], PARRY(g)[I4]

:temporal relations
[I1] ' starts ( [PENALTY_KICK], [I1] ' be f ore∨meets ( [I2],
[I3] ' during ( [PENALTY_KICK], [I3] ' meets ( [I4],
[I4] ' f inishes ( [PENALTY_KICK], [I2] ' f inishes ( [I3]

Figure 4.3: Declarative Description for a penalty kick. [Her95b, p.7]. The intervals have
temporal relationships as described by Allen [All84].

Figure 4.4: Possible configurations of the sub-intervals from figure 4.3, calculated by
the temporal reasoner. Since the description contains both an explicit (RUN_UP &
SHOOT) and an implicit (RUN_UP & MOVE) relation disjunction, the mapping from
description to course diagram is ambiguous. [Her95b, p.8]

well suited as basis for a knowledge inference procedure where the occurrence of certain
unobservable events in the domain is derived from other events which actually could be
observed.

In order to overcome these restrictions Herzog proposes the deployment of a dual rep-
resentation, thereby acknowledging that while course diagrams are a key concept for the
realization of an incremental recognition strategy, the declarative description is desirable
for further reasoning tasks based on the recognition results. He proposes to use an auto-
mated translation from declarative interval-based concept descriptions to course diagrams.
The translation is understood as a temporal reasoning problem to be solved with tempo-
ral constraint propagation techniques. Given the respective temporal entanglement of the
constituent predicates in a certain description11 the temporal reasoner12 tries to find the
temporal relation between each pair of predicates. If no disjunctions13 occur the process
11 such as starts, before, meets, during and finishes in figure 4.3
12 Herzog mentions the TIMELOGIC system by Koomen as reasoner of choice
13 alternative for a concrete temporal relation

http://www.robocup.org
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corresponds to a projection of the predicate validity intervals onto the temporal axis which
then allows a non-ambiguous diagram construction. However if disjunctions are found, as
in the example (figure 4.3), the reasoner enumerates the alternatives where each single
one corresponds to an own concrete course diagram (figure 4.4).

This statement of affairs is interesting as it highlights the fact that, generally speaking,
the expressiveness of both formalisms is equal. However, the declarative description some-
times corresponds to a family of course diagrams due to the flexibility which is obtained
by an application of the qualitative temporal relations between predicates as proposed by
Allen [All84]. In the translation procedure, the flexibility of the description is represented
as alternatives in the course diagram formalism. Based on this fact it can be stated, that
both Herzog and colleagues and Miene (cf. section 4.1.1 on page 29) use rather expres-
sive basic formalisms to specify their respective descriptions/patterns in comparison to
Wendler (cf. section 4.1.2 on page 33) who effectively specifies behavior patterns on the
complexity level of course diagrams. With respect to the proposal of a dual representa-
tion and automatic (one-way) translation, SOCCER provides a formal bridge between the
contributions from Miene and Wendler.

The translation procedure outline in [Her95b] is rather expensive as the applied algorithm
has exponential runtime complexity. Its application is feasible nevertheless due to the low
expected number of constituent predicates (#pred < 10), thanks to hierarchical ordering
of events, and the fact that the translation needs to be computed only once in advance
before any time-critical recognition is actually performed.

Eventually the basic research done for the SOCCER commentator system provided the
basis for a more sophisticated multi-media-capable system, the RoboCup Commentator
(ROCCO)14 [VAHR99] designed to accept log data generated by the Soccer Server in
regular matches of the RoboCup 2D Soccer Simulation League. ROCCO uses the same
incremental recognition strategy as its predecessor and proved its unconstrained applica-
bility during RoboCup 1998 where it was awarded the annual RoboCup Scientific Award
for an exceptional research contribution.

REPLAI: Recognition of Plans and Interactions (in Soccer Games)

In the context of the research performed for the VIsual TRAnslator (VITRA) introduced
above Gudula Retz-Schmidt was concerned with the development of the REPLAI sub-
system that would accept the events recognized by the SOCCER system and perform a
super-ordinate keyhole recognition for executed plans and interactions in a dynamic scene.

In the motivation of her approach outlined in [Ret91] Retz-Schmidt claims that systems
such as SOCCER are limited in that they describe only immediatly observable spatio-
temporal aspects of dynamic scenes. However ”human observers do not only pay attention
to the spatio-temporal aspects of motion. They interpret what they see.” [Ret91, p.174]

Due to the considerable flow rate of raw data comprised of both events15 and spatial
relations from the SOCCER recognition system Retz-Schmidt introduces a focus mech-
anism for REPLAI in order to filter out the sub-set of data which is considered bearing
relevance for further processing. Retz-Schmidt justifies this approach with a hint to hu-
man observers which are also limited significantly by a restrictive visual focus which allows
to keep track of no more than half a dozen objects at a time. Yet obviously humans are
reasonably good in attributing intentional behavior to observed entities. For each pro-
cessing step REPLAI determines a sub-set of interesting players on the soccer field based
on domain-specific focus heuristics. The system considers players carrying out interesting

14 A dedicated web site is still maintained for the ROCCO system on
http://www.dfki.de/imedia/robocup/ (visited:06/08/2006)

15 actions of agents such as (dribble player4) and dynamic agent properties such as (have_ball
player3)

http://www.dfki.de/imedia/robocup/
http://www.robocup.org
http://www.robocup.org
http://www.robocup.org
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actions (dribble) or having interesting properties (have_ball), players with an inter-
esting spatial relation with an already focused player, or special static objects such as
the goals on the soccer field. Beyond that in REPLAI there is a notion of star players
which due to their special capabilities must be kept in focus regardless of the immediate
situation as decisive actions for the course of the game must be expected being carried
out by those players at all times. During normal operation the focusing criteria are kept
invariant, thus rendering the focus deployment a ground step in the bottom-up strategy
for subsequent plan and interaction recognition. However, Retz-Schmidt introduces the
possibility to expand the focus temporarily replacing the standard heuristics by demand
of higher-level recognition components.

In REPLAI distinct system components are responsible for the recognition of plans
which apply for single agents and for interactions, composite plans which are carried out
by groups of agents where each agent is contributing by trying to achieve an individual
partial plan.

The plan recognition is based upon a domain-specific plan library which has been as-
sembled manually using expert knowledge such as coaching experience and textbooks on
soccer strategy. Actions and their hierarchical relation are represented in a special data-
structure, an AND/OR-Tree. This tree structure describes both the hierarchical ordering
of plans where the abstraction level of the plans grows towards the tree’s root and the
respective plan decomposition in a sequence of plan constituents which can be either sub-
plans or elementary actions whose execution by individual soccer players can be directly
observed. The decomposition specifies the temporal order of plan constituents. Succes-
sive plan steps are interconnected with temporal arcs that express immediate succession.
Since besides compulsory forward-directed arcs additional reflexive and backward-directed
arcs are allowed the plan description is quite expressive as plans can contain sequence,
alternatives and repetitions. The nodes in the plan hierarchy are associated with a set
of preconditions and intended effects. The preconditions specify constraints that have to
be satisfied in order for the respective action/plan to be adequate at a certain moment
during a soccer game.

The actual plan recognition in REPLAI is described as a top-down search and instan-
tiation process. Two recognition modi can be distinguished. The first applies when no
current plan exists for an agent. The system then proceeds with a top-down search of
the plan hierarchy checking the plan preconditions along the way to identify those plans
which are plausible given the current situation. The leaves of the selected subtrees which
represent observable actions are matched against the input data observed from the SOC-
CER system. If a match can be found a new plan hypothesis is instantiated. At the end
of the search process in general a set of possible plan hypotheses has been gathered each
stating that the agent is supposedly executing a certain plan and has proceeded up to
a certain execution step in the process. Now that hypotheses exist the second recogni-
tion mode applies where the further progress in the realization of presumed hypotheses is
monitored. Since search and tracking are applied in a mutually exclusive fashion and hy-
potheses which are no more supported by the incoming data are dismissed the number of
remaining active hypotheses dwindles as the game progresses eventually leading to either
an empty hypothesis set (which spurs another hypothesis search) or a single hypothesis in
which case the associated plan is considered as recognized. Once its last decomposition
part is executed the plan is considered observed.

The recognition process provides the necessary data for the dependent recognition of
agent intentions. Retz-Schmidt distinguishes state-directed intentions and action-directed
intentions. The latter intentions are especially noteworthy as they indicate what the
agent currently executing a plan is determined to do in the immediate future. The
action-directed intentions are in principle comprised of all potential next plan steps for
the respective plan hypothesis. If more than a single next step exists REPLAI does not
evaluate a probability distribution over the incidence of possible steps. It rather finds
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the next unambiguous plan which comprises all alternatives and declares this plan as the
current intention thereby making a less specific but safe statement.

REPLAI is an interesting research effort due to the fact that it demonstrates a working
connection of a system for the spatio-temporal analysis of dynamic scenes in a certain
domain16 and a plan recognition system. Based on the provided qualitative data and
additional expert knowledge encoded explicitly in the plan library, the recognition system
is able to recognize higher-level concepts. The recognition process is advanced from the
recognition of ’simple’ actions to strategic moves. At the same time due to the availability
of both recognized actions and plans schemas it becomes feasible to make assumptions
about the immediate intentions of players on the field thus going from recognition to
prediction.

4.1.4 Application of Qualitative Reasoning to Robotic Soccer

Steinbauer et al. discuss the application of qualitative reasoning for robotic soccer [FSW04,
SWW05]. They provide a detailed description of the development of a robust hybrid
control system for autonomous robots in the RoboCup Middle-size Robot League (cf. sec-
tion 2.1.1 on page 9) which is a combination of a reactive control system and a deliberative
control system. Both aspects – reactivity and deliberation – are retained in the target
system as they complement each other well. Due to their small control loop which maps
sensor information immediatly to executable actions reactive control is suitable in situa-
tions where a swift action execution is mandatory such as in the soccer defense. On the
other hand deliberation, the explicit planning of (team) actions using classical artificial
intelligence techniques17, is required in order to execute specific tactic moves and thus
adhere to a super-ordinate team strategy.

The desire to implement a planning system leads to the demand for a qualitative rep-
resentation. The authors argue that ’planning tasks are particularly appropriate for ap-
plication of qualitative techniques’ and provide a list of advantages which are gained by
performing planning based on a suitable qualitative representation [FSW04, pp.3]. First
the search space for the planning problem is kept small as a qualitative model equals an
infinite number of numerical models. This is possible by subsuming situations which can
be considered equivalent in the context of the application domain from a high-level point
of view even though they bear differences with respect to their respective geometrical
layout. Furthermore due to the qualitative abstraction graceful degradation is achieved
meaning that the robot can keep operating in the presence of errors in its available quan-
titative raw data. The authors also note that an explicit treatment of uncertainty and
missing knowledge is possible in a qualitative model.

For their qualitative reasoning approach Steinbauer et al. start with the definition of
a domain-specific qualitative representation language that comprises a suitable set of
first-order qualitative ground predicates such as inReach(x). For each such predicate an
associated interpretation function is defined which for a specific moment in a soccer game
allows to evaluate whether or not the predicate holds for the current moment in time given
the state of the world as perceived on the quantitative level. The interpretation function
is the means by which the abstraction step from quantitative raw data to meaningful,
human-readable, symbolic facts is performed which can be subsequently used as input for
the classical AI planner in order to determine the next course of action for the robot.

In real-life scenarios as found in the RoboCup Middle-size Robot League the mapping
from a quantitative model to symbolic predicates in a dynamic and uncertain environment
leads to two major problems:
First, the truth value of predicates is calculated using thresholds, i.e. there are sharp

16 which yields a well-grounded qualitative representation
17 In their own approach Steinbauer et al. use a state space regression planner and refer to [Wel94]
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boundaries for the quantitative input values which considered in the interpretation function.
Thus, even slight changes of the environment lead to truth value changes which can lead
to instability in the high-level decision making process as plans grow more and more likely
to be interrupted eventually. This is counter-productive to the desire to achieve a certain
commitment once a plan has been chosen for execution.
Second, Situations can occur where the truth value changes continually in subsequent
computations due to a value oscillation of the quantitative input values around the sharp
numerical boundaries which are used for predicate validity checks. Such an oscillation
can be caused by the inherent fluctuations in the robot’s sensor input (sensor noise) due
to seemingly indiscernible changes in the environment (such as the lighting conditions
during a match) and the constrained perception capabilities of the robots based upon
sensors with limited precision which cannot be worked out by the respective localization
techniques (such as particle filters).

In order to mitigate the identified problems Steinbauer et al. propose to take into
account the predecessor state of a predicate for the consecutive evaluation step and to
introduce a certain resistance of predicates against state changes. Borrowing from the
field of electrical engineering where the technique at hand is known as hysteresis function
a change of the predicate state can only be brought about by a sufficiently strong force
that works against the predicate’s persistence effort. In the context of robotic soccer
’strong force’ refers to a significant change in the environment of the robot which is
reflected in the value run of the quantitative data considered in the validity evaluation.
By applying predicate hysteresis for the change behavior of predicate truth values it is
possible to trade off necessary reactivity of predicates against the desire to suppress validity
oscillation and obtain increased stability. Predicate hysteresis is modeled by a temporary
extension of the numerical value boundaries which are used in evaluations of the predicate
truth value [SWW05]. The extent of the predicate hysteresis needs to be tuned for each
specific predicate and given application scenario by a modulation of the hysteresis size
(increase of the bounded numerical value range).

Steinbauer et al. performed a thorough evaluation of predicate generation with applied
hysteresis compared to their basic setup and were able to confirm the assumption that
significant improvements in predicate stability can be obtained with small hysteresis sizes
while retaining enough reactivity for an adequate adoption to situation changes [SWW05].

4.1.5 Learning the Sequential Coordinated Behavior of Teams from Obser-
vations

Kaminka, Veloso et al. focus on the task to apply autonomous unsupervised learning for
the recognition of sequential behavior of both single agents and agent teams based on
the observation of their behavior traces [KFCV03]. The RoboCup 2D Soccer Simulation
league is used as test-bed for the development of their two-tier approach.

An observing agent first uses a set of simple basic behavior recognizers in order to parse
the stream of incoming raw observations which comprises a multi-variate time series of
sensor readings and compile it into a stream of recognized behaviors which are referred to
as events such as pass(player1,player2) or dribble(player3). As can be seen in
the examples the atomic events are annotated with their respective participating players.
It should be noted that to the best knowledge of the author, no further annotations are
maintained such as action execution time intervals or additional attributes that would
allow for the assessment of action execution characteristics. In the construction of the
recognizers which is performed manually by a designer well acquainted with the application
domain (such as simulated soccer) their function is restricted to the recognition of atomic
events.

The recognizers remain ignorant of ways how these simple atomic events may be com-
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bined in order to form higher level events and operate independently from each other.
Thus while the multi-variate input stream is fed into the system, the recognizers are ap-
plied in parallel, each computing only the occurrences of its associated atomic event over
the course of a game. In order to detect those occurrences each recognizer is built as a log-
ical combination of quantifiers and qualitative predicates such as Possessor(player,t)
or Teammate(player1,player2,T18). The predicates which are extracted immediatly
from the raw data stream and which are associated with single moments in discrete time
describe spatial relationships between player and ball and organizational relationships be-
tween players. Based on their encapsulated rules the recognizers detect event occurrences
with some accuracy.

Kaminka et al. admit that ambiguous interpretations can occur in their recognition ap-
proach when for instance the actual kicker of the ball cannot be determined with certainty
among a set of candidates. Hence overlapping event occurrences may be recognized. The
authors claim that in the considered application domain of simulated soccer the degree of
uncertainty introduced in the recognition of atomic actions is moderate as it is the sequen-
tial combination of such atoms to multi-agent actions (dyads) gives rise to complexity
and increased uncertainty due to the large space of combinations for the construction of
sequences.

As for the handling of ambiguities in the recognition of atomic events the authors use
manually assembled domain-dependent heuristic rules which prefer certain interpretations
rather than other alternatives. Using the recognizers and the heuristics for disambiguation
the stream of world state events is transformed into a single sequence of atomic events
such as:

. . . pass(player1,player2)→ pass(player2,player3)→ dribble(player3) . . .

For further analysis the complete event stream is segmented by team yielding two sets
of uninterrupted event sequences of varying length. The assumption made by Kaminka,
Veloso et al. is that within these event sequences team characteristic complex action or
interaction patterns can be identified which give hints as to the strategic play of the
respective team. A problem which arises due to the highly dynamic character of the
application domain is the fact that while groups of agents try to carry out (pre-)planned
coordinated activities the circumstances in the game may lead to reactive variations of the
basic patterns. This factor must be acknowledged and handled in the statistic evaluation of
the event sequences. Once the events are stored in a special trie data structure that allows
for efficient data retrieval, two competing methods are used by a learning component to
statistically evaluate the significance of event sequences or parts thereof. The first method
is based on frequency counting, the second on statistical dependency checks.

Experiments showed that both methods are suitable to detect characteristic event se-
quences for a team of soccer agents. However the method build upon statistical depen-
dency checks seems to model the causal relations among the actions within the sequences
better than pure frequency counting.

The action recognition presented by Kaminka, Veloso et al. is quite limited with respect
to expressiveness as solely action sequences are compiled which in the absence of further
predicates describing the respective situational contexts are barely sufficient neither to
understand the course of the game nor draw further inferences based on the provided
foundation. Another drawback is that the only attributes which are maintained for each
action are the participating agents. Thus the actions are only represented in terms of
their most rudimentary features. While this modus operandi is suitable for the immediate
learning task to be supported, alternative usage scenarios for the compiled data beyond
simplistic statistical evaluations don’t seem to be feasible with the presented special pur-
pose recognition approach.

18 the capital T implies a time-invariant predicate
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4.1.6 ISAAC, Aiding Humans in Understanding Team Behaviors

Raines and colleagues present their research efforts directed at the development novel
effective means to help human designers of multi-agent systems to understand the com-
plex behaviors by groups of agents in their respective domain [RTM00, NMMR04]. An
automated team analyst (ISAAC) is proposed which is designed for a post-hoc, offline
analysis of agent teams and adheres to three principal design constraints that are im-
portant for team analysis. First, ISAAC supports multiple analysis angles which differ in
their level of granularity. While it is possible to concentrate on the analysis of critical
actions performed by single agents it is also possible to analyze interaction patterns of
agent groups as well as global team performance. Due to its focus on helping humans to
understand agents ISAAC is designed not only to dig up helpful information from analyzed
data but also to convey this information in an appropriate way which is distinct for each
respective analysis angle. While analysis results for global team analysis are represented in
natural language summaries, ISAAC employs a multi-media viewer for the remaining anal-
ysis angles. ISAAC uses a data-driven unobtrusive approach in its analysis using external
behavior traces calculated from low-level sensor data as its starting point.

ISAAC was applied successfully in the domain of RoboCup 2D Soccer Simulation both
during the ’97-’99 RoboCup World Championships and by a considerable number of simula-
tion league teams as a valuable analysis tool in the preparatory phase before the respective
RoboCup events. In 1999 ISAAC was awarded the RoboCup ”Scientific Challenge Award”.
Even though it has deep roots in the domain of simulated soccer the analysis techniques
developed for ISAAC have been shown to be applicable in other domains such as the
analysis of communication behavior for collaborative software agents [NMMR04, pp.39].

For the development of ISAAC Raines et al. used a two-tier approach for the analysis
problem at hand. The first stage addresses the acquisition of models which describe
behaviors on the respective level of granularity in a compact and human-understandable
way. The second stage is dedicated to the exploitation of the learned models in analyzing
a certain team of soccer agents. In the following both stages are outlined briefly with
respect to the three supported analysis angles.

On the lowest level dedicated to individual agent actions Raines et al. concentrate on
so-called key actions whose execution leads to clear-cut immediate success or failure. In
the work described in [NMMR04] only the shot at the adversary goal (in the intention
to score) is supported as concrete key action. Once a set of features which are consid-
ered relevant with respect to success and failure such as ball velocity, distance to
goal or number of defenders19 has been identified decision tree learning (C5.0)20 is
used on a large set of sample situations from recorded soccer matches. Once the learning
phase is completed the computed decision tree encodes a comprehensive set of rules spec-
ifying conditions the execution of the key action and either leading to success or failure.
While the tree is not meant be used for prediction purposes it helps to identify the feature
subset which indeed bears relevance for the success of a key action for a certain team.
The rules can provide clues as to where a team’s weaknesses with regard to the respective
action are located. ISAAC allows for a so-called perturbation analysis where learned rules
can be modified in a single rule condition21. Once the perturbation is specified ISAAC
mines situation matching the new rule and evaluates their success. Thus it is possible to
evaluate ’what-if’-scenarios.

On the level of agent interactions Raines et al. concentrate on key interactions, action
sequences of a certain length such as (opponent → shooter → goal) which again
yield immediate success or failure (a goal). On this level ISAAC learns a probabilistic

19 between agent trying to score and the goal
20 C5.0 is an optimized implementation of the C4.5 decision tree learning algorithm written and dis-

tributed by Ross Quinlan/RuleQuest Research, http://www.rulequest.com (visited:16/12/2006)
21 The modification consists of a negation of the chosen condition
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finite automaton. Based upon this data structure it is possible to analyze the way teams
typically score goals. It is also possible to compare teams two at a time and determine a
degree of resemblance in their interaction behavior.

On the level of global team model complete games are considered as input for another
tree learning process (again C5.0) besides a set of features such as ball possession
time, caught in off-side trap, etc. ISAAC learns and later uses seven classes rang-
ing from big win (a victory by five goal or more) to big loss. Once again the decision
tree identifies the important factors among the chosen feature set leading to the respec-
tive outcome. In order to analyze a new game ISAAC computes its game statistics and
seeks to find a matching rule and generates a template-based natural-language report of
the game where it also handles game results which are not in accordance with ISAAC’s
experience encoded in the decision tree.

Raines and colleagues claim that ISAAC has been intensively tested by the RoboCup
soccer simulation community over the years and has shown without doubt its use for the de-
velopment process of complex multi-agent systems for dynamic environments [NMMR04,
p.5 & pp.32].

A drawback of the ISAAC system is the clear-cut constraint that it cannot be applied
under real-time conditions due to its character as sophisticated tool to mine comprehensive
information from log-file data for use by agent designers.

4.1.7 Probabilistic Analysis of Football Matches

Bobick and Intille present a probabilistic framework for the recognition of complex multi-
agent actions in dynamic scenes which is used for the recognition of typical plays22,
executed by the offensive team, during American Football matches23 [Int99, IB99, IB01]
(cf. figure 4.5).

The approach advocated by Bobick and Intille comprises four representation elements.
The first thereof is made up of a temporal structure description of the global team behavior
for each distinct kind of offensive play. For each offensive player involved in the play a set
of individual goals – actions to be executed as the offensive play unfolds – are specified
with a suitable parameterization. A partial temporal ordering of the individual goals is
defined using the before relation. Goals associated with different agents can also be
brought in a global temporal relation stating that a pair of goals either needs to happen
at about the same time. Description also allows alternative courses of actions as goals
from distinct agents can be in an XOR relation.

The second representational element is a set of so-called visual networks, Bayesian be-
lief networks which accept visual evidence obtained from the observation of the dynamic
scene. Each belief network models a single goal or event used in the temporal structure
description. These belief networks are constructed manually by a knowledge engineer.
Due to their size (typically 15-25 nodes) and connectivity they allow for exact propaga-
tion algorithms to compute the probabilities for each node state given a certain evidence
set. These belief networks feature two classes of nodes: unobservable belief nodes with
a binary state (true, false), amongst them the main goal node, and observable evi-
dence nodes which are directly dependent upon the raw input data. All evidence nodes
feature symbolic states which are constituted either by binary or trinary24 truth values or

22 Contrary to soccer, American Football is highly structured in distinct plays, short periods (measured in
seconds) with a clearly defined task distinction between attacking and defending team. The situation
at the start of each play is comparable to a standard situation in soccer. The attacking team plays
according to well-defined tactical patterns.

23 A dedicated web site is still available at:
http://vismod.media.mit.edu/vismod/demos/football/index.htm (visited:04/12/2006)

24 Besides observed and notObserved an additional state is introduced which represents uncertainty of
observation: maybeObserved
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Figure 4.5: A typical play in American Football. [IB99, p.2]

specialized symbolic states for such input as distance between two objects. Such symbolic
states are obtained by a quantization of continuous quantitative input values by dedicated
feature detectors. The main belief node accepts parameters such as the acting agent. If
a visual network is evaluated in the same way for consecutive time frames the emerging
result is a likelihood curve over time. Within the probability-based formalism proposed by
Bobick and Intille continuous-value curves as displayed in figure 4.6 correspond to binary
01-curves obtained when interpreting predicates with temporal dilation as used in the ap-
proaches by Miene (cf. section 4.1.1 on page 29) or the VITRA project (cf. section 4.1.3
on page 37) accordingly.

Temporal analysis functions constitute the third representational element. These func-
tions act as evidence detectors for temporal relations (before,around) which are used in
the temporal structure descriptions as well for goal occurrences. They rely upon heuristics
which compare amongst others the activation levels of each goal over time, characteris-
tics of each input curve and the temporal distance between certain curve features. The
functions preserve the uncertainties in the output of the visual networks. Harsh thresholds
are thus not encountered.

Finally the plays actually performed on the field by the offensive team are recognized
using multi-agent belief networks which are assembled automatically on the basis of the
respective temporal structure descriptions. A multi-agent belief network integrates the
likelihood values obtained from the temporal analysis functions and calculates likelihood
for the occurrence of a certain play. It is reported that the generated networks which
recognize offense plays with eleven participating players typically contain at least 50 belief
nodes and 40 evidence nodes. Still exact probability propagation remains feasible due to
the binary state of all belief nodes and the network linking structure.

In their evaluation with 25 tracked plays using 10 temporal play descriptions the re-
cognition accuracy is promising (21 out of 25 which corresponds to 84%). Most of the
misclassifications that occur can be attributed to play descriptions which vary only in the
motion of a single player. It should be noted that in general while the correct play is
recognized as most probable option most of the time, alternative plays are still awarded
high probabilities. Also the system has problems when faced with yet unknown plays
where the desired result that none of the known plays is occurring is not obtained. Bobick
and Intille claim that this problem is due to missing visual networks which still need to
be constructed and as result a global model which is still ’to weak’. The recognition
yields results soon after the start of a play. In terms of computational load the results are
mixed as the system requires approximately 1 second of computation per frame per tested
play yet on a 500 MHz Digital Alphastation. Even though faster hardware has become a
standard in the meantime real-time application still seems critical.
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Figure 4.6: Sample likelihood curves returned visual belief networks for dropback(QB5)
and catchPass(RSE) respectively superimposed with the temporal curves
for dropBack(QB5) before catchPass(RSE) and dropBack(QB5) around
catchPass(RSE) provided by dedicated temporal analysis functions. [IB99, p.5]

The approach by Bobick and Intille is interesting as it explicitly handles uncertainty
throughout the complete recognition process from sensor input to high-level plays due to
the utilization of Bayesian networks. Since facts are represented in terms of continuous-
valued confidence time series, a transition to crisp, concrete statements that certain events
occurred in a certain time interval within the observed dynamic scene seems difficult to
obtain as appropriate confidence thresholds would need to be defined. For their own
research Bobick and Intille can neglect such problems since in the end they are only
interested in the identification of the most likely play.

4.1.8 FIPM: Football Interaction and Process Model

Beetz and colleagues are concerned with a computerized real-time analysis of human soc-
cer games in order to support coaching activities. While comparable systems exist for
offline game analysis, targeted primarily at strategy development and performance eval-
uation, such as [LW05, BCP+97] or ISAAC (cf. section 4.1.6 on page 45) the provision
of automated online coach support that comprises real-time interpretation of sensor data,
recognition and classification of ball actions and fast-action game analysis and assessment
is seen as a new demanding challenge [BBG+06, BKL05, BSK+04, BKF04]. As a practi-
cal solution Beetz and colleagues introduce the Football Interaction and Process Model
(FIPM) and associated software system. The stated long-term research goal is the appli-
cability of the FIPM system for real-life soccer matches. Two strategies are discussed in
order to obtain suitable input data regarding the whereabouts of both the players and the
ball. First, the data could be accumulated using a microwave, real-time positioning sys-
tem where wearable sensorics is attached to the players shin guards and the ball [BKL05].
Second, the data can be extracted from video footage of soccer matches by means of a
dedicated image processing system. This approach has been outlined in [BBG+06]. Since
both solutions are laborious pose noteworthy research problems in their own right, FIPM
was developed in a first expansion stage using log records from matches of the RoboCup
2D Soccer Simulation League played during the RoboCup 2003 championships as input.

While FIPM is meant to act as a real-time game analyzer, the system also comprises
means to store analyzed games persistently in a dedicated game database and learn mul-
tiple game models by applying both data mining techniques and decision tree learning on
subsets of the stored game database. The learned models are stored and can be used as
background knowledge for the interpretation of agent/team behavior during the real-time
analysis.

When a soccer match in analyzed by the real-time part of the system the first step in
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the motion and action recognition process is an abstraction of the pre-processed sensor
data in order to obtain a sufficiently concise motion representation that can be handled
efficiently. A motion interpreter compiles motion models for each player on the soccer field
and the ball. Each such model is comprised primarily of a sequence of motion segments
(m1, m2, . . . , mn). The idea is to segment the complete trajectory of movable objects ob j
over time into abstract representations of sub-trajectories, called motion segments defined
as: mi ≡ (ob j, t1, t2, p1, p2, f : T→ R2) [BBG+06]. Each sub-trajectory is represented by
its temporal extension (t1, t2) ∈ T, the position of the respective object at these interval
bounds (p1, p2) ∈ R2, and a linear function f which approximates the object position for
each discrete moment t : t1 < t < t2. During a game the segmentation process iteratively
checks whether the motion segment should be extended25 or a new segment needs to
be started. Thus, the motion model grows over the course of the game. Beyond the
sequence of motion segments which is computed automatically, the movement models
contain additional information about the occurrence of instantaneous motion events such
as ball contacts, ball out of bounds and referee whistles. Beetz and colleague mention
that these events are asserted manually by the system developer. This note implies that,
while FIPM is capable of real-time processing, it is certainly not a live real-time game
analyzer.

The compiled motion models are abstracted further into an episode model where a
special focus lies upon episodes of ball movement. An episode is formally defined as a
triple (mi, . . . , mj, se, f e) which describes a sequence of motion sequences and a starting
as well as a finishing event. The recognition of episode candidates is performed with
a finite automaton which initializes new candidate instances if it receives a new motion
segment whose start coincides with the occurrence of a ball-control event for a certain
player. The automaton then remains in an intermediate state accumulating new motion
segments of the initializing player whenever necessary as long as it receives only further
ball-contact events for the same player. Upon reception of a different event, it terminates
and completes the episode candidate which now needs to be classified as one of the
supported actions (pass,shot and extended ball possession of a single player). Beetz and
colleagues claim that a complete classification based on manually crafted classification
rules is error-prone which is for the most part due to the dynamics and complexity of soccer
play leading to failed actions quite regularly. Thus only successful actions are recognized
in a crisp fashion using rules. For failed actions the class membership is asserted with
a subjective probability. In order to obtain the associated rules for the classification a
decision tree learning is applied to derive classification rules automatically from manually
labeled sets of pairs of episode features and episode class. It is stated that in order to apply
the learning algorithm first the aforementioned feature set must be chosen appropriately.
Beetz et al. use features which are encoded within the episode models such as the episode
duration, the number of ball contacts within the episodes or whether or not the ball
possession changed within the episode. That is, no additional information describing the
episode context is used for the feature language. The second problem which is mentioned
seems to be quite fundamental. While it is claimed that in principle in order to compile
a suitable training set of feature-description to class associations the intentions of the
acting agents needs to be known, in real life it is not. So intention is inferred manually
by the developer during compilation of the training set.

FIPM classifies the episodes on the top-level into pass. dribbling, shot and lost ball
where the latter only states that, something worked out not quite as intended by the
action initiator. Using these four top-level classes the recognition can yield crisp results
while making sure recognition is also both complete and un-ambiguous. If an action is
recognized as a lost ball the learned decision tree can be used to yield an estimate for
a more concrete classification such as failed pass. To conclude FIPM recognizes actions

25 which is true if the position prediction for the current moment yielded by f (t) and the sensed position
differ no more than a certain threshold values ε
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with certainty on the top-level, can provide specialization estimates for the lost ball action
based on a learned decision tree, and describes the action instances concisely in terms of
the episode triples.

It is not mentioned whether or not the fact that the ball trajectory during recognized
actions is maintained as sequence of motion segments is exactly exploited further in order
to characterize the respective action better. However in [BSK+04] it is briefly mentioned
that FIPM is capable of recognizing pass flavors such as short/long, deep/cross, fast/long.
It also remains unclear in which way the motion segments of the players are used.

Having outlined FIPM’s action recognition process a short treatment should be given
to the game analysis capabilities. FIPM is comprised of five distinct layers building upon
each other which each allow for distinct game analysis aspects. Those layers are: position
and motion, action, situation, tactical and assessment.

With respect to game analysis, on the motion layer the data compiled during the action
recognition allows for the calculation of movement profiles for each player. Based on a
compilation of preferred player/team positions FIPM is eventually capable of an analysis
of the teams’ tactical lineup. On the action layer, statistics with regard to recognized,
individual ball actions for each player allow for a compilation of player profiles and the
identification of players with exceptional importance for the performance of a team. It
is noted that FIPM is capable of a recognition of passing dyads. The further levels in
the FIPM system are concerned with higher-order analysis. In the situation layer the
identification of typical situations such as standard position-oriented attacks, counter
attacks or kick and rush attacks is performed. Based on a representation of a game
as a sequence of situation transitions FIPM can analyze situation specific losses of ball
possession or the success rate of certain types of offensive play. On the highest level FIPM
assesses global team tactics such as playing styles.

With regard to action models Beetz et al. state in [BKL05] that a ”key FIPM capability
is the automatic acquisition of action models. Computer systems that analyze actions
as complex and diverse as those in football must be equipped with rich action models”.
Those action models come in several flavors. As an example observation models are
employed to identify actions in the recognition process, causal models give clues as to the
conditions under which distinct actions such as shots typically succeed, while predictive
models can be used to determine with good accuracy if an action is likely to succeed or
fail given a certain game situation and the experience introduced by the data set on which
the learning was carried out. Action Selection Models can be used to predict the choice of
action for soccer players given the respective situation. The bigger part of those models
is used for statistical evaluation purposes in currently running games.

Beetz et al. claim potential use of their analysis system both for professional game anal-
ysis and broadcasting of sports events. The latter could be rendered individualized thus
adopting the reports to the likes and interests of the respective user which for example can
concentrate on the performance of certain favorite players and game situations. Moreover
the continuous maintainance of a broad range of statistics as outline above provides a
rich overall user experience.

4.2 Discussion

Now that the survey of related work has been compiled (cf. feature matrix in table 4.1
on page 53) the results thereof need to be discussed with regard to the motivation and
demands that have been formulated in previous chapters of this thesis.

Considering the wide spectrum of approaches that were considered for the survey it
seems obvious that, due to the respective concrete motivation to perform a flavor of spatio-
temporal analysis, not all approaches are equally well suited for further contemplation
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regarding applicability of proposed techniques in the context of the desired spatio-temporal
real-time analysis of dynamic scenes from the RoboCup 3D Soccer Simulation League by
either agent type (coach or player) participating in simulated soccer games.

Approaches such as ISAAC (section 4.1.6) and FIPM (section 4.1.8) maintain a strong
research focus on the compilation and maintainance of behavior/agent models and game
statistics, thus enabling computer-aided game analysis by a human operator26. In principle,
both above-mentioned approaches evaluate log records of completed soccer matches of-
fline using data mining techniques. They focus on the deployment of efficient mechanisms
for a retrieval of high-level information based on low-level sensor input. While ISAAC is
completely dedicated to offline analysis due to its purpose as evaluator for agents acting
and cooperating in an MAS for the respective human designer, FIPM, which is developed
as analysis tool to support online coaching activities, is a hybrid system capable of an
online interpretation of game input data based on the utilization of learned agent/game
models to analyze an unfolding game.

Approaches as proposed by Miene (section 4.1.1 on page 29), Wendler (section 4.1.2
on page 33) and the Herzog et al. (section 4.1.3 on page 37) on the other hand are
interested in the compilation of qualitative representations and action recognition. The
goal of these approaches is a direct further use of the generated knowledge either by the
observing agents within their simulation environment27 or an observing agent such as an
automated commentator. On that score these approaches bear noteworthy similarities
with the approach developed in this thesis, since it has been stated that the soccer agents
both on the field (players) and on the line (coach) should be equipped with an additional
qualitative representation of their environment. The latter would lead to a comprehensive,
hybrid knowledge base which incorporates both quantitative and qualitative aspects and
whose increased amount of information can be exploited directly by the agents in order
to adapt their style of play.

The approach by Miene is especially interesting due to its vertical integration as it
discusses the whole work flow from the filtering of raw sensor values and time series
transformation up to the recognition of complex multi-agent actions such as off-side
traps. Miene’s approach is comprehensive in another respect as well. It is not constrained
to the recognition of actions. It rather distinguishes between situation properties, events
and actions and recognizes the occurrence of all of these concepts based on the same
formalism. Miene has found an intuitive way to describe complex concepts in terms
constituent concepts and their temporal relations. While Wendler and Herzog et al. use
similar descriptions as well, Miene’s description is particularly interesting due to the fact,
that no restriction is given for the constituent types. The approach by Miene bears some
drawbacks too, as in its RoboCup related incarnation it has only been used in offline
scenarios even though online-capability has been claimed. Also the detection of action
concepts is exploited primarily as an a posteriori assessment thus limiting the approach’s
use for scenarios when the possibility to actually react is desirable.

Here, Wendler’s approach offers an alternative as he suggests that actions should be
attributed labels which indicate their state of execution. Wendler presents an incremental
recognition strategy, borrowed from previous work by Herzog et al. which in principle allows
for an early detection of actions and an delayed allocation of action attributes. The ability
to deploy an incremental recognition strategy comes at a cost as the action specifications
used by Wendler are less expressive than those used by Miene. This becomes clear, when
the work of Herzog et al. is considered, where both formalisms (Miene and Wendler) are
used side by side and it is shown how both relate to each other. Particularly, Herzog et
al. state that both takes on the subject have their respective strengths, the formalism

26 where this operator adopts the position of either a MAS developer or coach
27 Both Miene and Wendler use the 2D online coach for the execution of the analysis. Miene’s coach logs

the course of the game incrementally, Wendler’s coach automatically generates and deploys opponent
models.
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by Miene being better suited for further reasoning tasks, the formalism by Wendler for
incremental recognition.

Brought forward to Miene’s approach it is conceivable that a satisfactory approximation
of quasi-incremental in-progress recognition is feasible, once the target concepts such
as dribblings are decomposed into distinguishable constituents whose recognition fuels an
incremental recognition of the target concept by means of recognition updates (i.e. action
lengthening).

Wendler suggests an object-oriented implementation of the proposed action recogni-
tion approach which is custom-tailored to suit his respective requirements with regard to
detection scheme, storage and retrieval. However the lecture of both [Wen03] and the
publications of the VITRA group suggests that, at least to some degree, the expressive-
ness of the concept descriptions which are immediatly applied in the recognition process
is traded in order to obtain real-time applicability. The research work by Gehrke and
colleagues [Geh05] offers an effective alternative to avoid a decline of expressiveness a.)
in the concept specification on the design level and b.) in the conveyance thereof into
the respective implementation. Gehrke et al. propose the employment/adoption of a
well-designed general purpose reasoning engine such as XSB-Prolog which, due to its sup-
port for declarative programming, allows for the use of the concept specification as actual
part of the program leaving the procedural aspects of concept detections to the reasoning
system as far as possible. As it is shown in [Geh05] that online applicability and the use of
a dedicated reasoner is accordable in the domain of intelligent vehicles, an advancement
in this direction seems promising for soccer simulation as well.

Wendler introduces the idea to recognize not only the basic action but also concept-
or particularly action characteristics and thus arrives at a more comprehensive description
of the observed dynamic scenes. While Wendler mixes quantitative parameters30 into
otherwise qualitative concepts which is not desired for this thesis, he provides an interesting
way to exploit the given set of readily available qualitative ground data efficiently and to
introduce increased diversification of the concepts also wrought in related approaches.

None of the three approaches mentioned above explicitly addresses the problem of
sensor noise which is to be expected once imperfect vision data is used as starting point
for a spatio-temporal analysis of dynamic scenes. Steinbauer et al. (section 4.1.4 on
page 42) provided an interesting contribution how sensor noise can be dealt with at the
level of abstraction to symbolic, qualitative values borrowing from the field of electrical
engineering. The application of hysteresis is proposed and shown to work well under real-
world conditions on real hardware. Since this thesis aims to deal with sensor noise such a
system seems to be valuable.

Intille and Bobick (section 4.1.7 on page 46) propose an approach to action recognition
on the agent and team level based upon Bayesian networks. The approach is interesting
since it strives to recognize both situation properties and actions similar in principle to
those recognized by Miene while uncertainty is handled explicitly throughout the whole
recognition process. As a result the clear-cut validity intervals for recognized concepts
which are common to the traditional approaches by Miene, Wendler and Herzog et al. are
substituted with probability distributions over time. The concept is interesting as Bayesian
networks are known to handle uncertainty and missing data. However the specification of
the large amount of required belief networks which is critically discussed by the authors as
possible development bottleneck seems to be intractable in the context of a diploma thesis.
In [BBG+06, p.8] and [BKF04, p.14], Beetz et al. express their doubts as whether the
approach proposed by Intille and Bobick can be transfered from the application domain of
American football, which is a highly structured game of temporally distinct specific plays

28 Time Series Transformation
29 Predicate hystheresis was introduced in section 4.1.4 in the work of Steinbauer et al.
30 such as motion vectors
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with highly-detailed player roles where the failure of plays is considered an exception,
to the soccer domain. The baseline of the expressed criticism is that soccer is rather
continuous and dynamic with respect to its game flow with considerable emphasis on
reactive behavior traits. Plays are far less differentiated and actions fail on a regular basis.



5
A Conceptual Approach for 3D Soccer

Simulation

The fifth chapter of this thesis discusses the conceptual foundation for the concrete im-
plementation of a flexible framework for spatio-temporal analysis of dynamic scenes in
the RoboCup 3D Soccer Simulation League. From a high-level point of view, two fun-
damental scopes of duties can be distinguished for such an analysis. First, pre-compiled
raw data from a readily available quantitative knowledge base is transformed by means of
qualitative abstraction into a basic pool of atomic, qualitative facts. Second, the incre-
mental compilation of an appropriate fact pool is succeeded by a data-driven detection of
extended motion incidences spanning events, actions and action sequences by means of a
matching process for spatio-temporal patterns.

Section 5.1 is concerned with the description of the qualitative abstraction. First, the
scope of concrete qualitative predicates and their respective class codomains is worked out
in section 5.1.1. Subsequently, section 5.1.3 outlines the conceptual implementation of a
categorical classification with flexible bounds. Afterwards, section 5.1.4 comprises a short
excursus into formalisms for the representation of time. Based on that foundation, in
section 5.1.5 the qualitative predicates are associated with a temporal extension such that
the qualitative abstraction yields spatio-temporal facts as a result. The field of qualitative
abstraction is concluded with the introduction of a focus heuristic to constrain the pool
of produced facts to a relevant subset.

Section 5.2 works out suitable formalisms for the representation of extensive motion
situation based on suggestions from Allen’s interval temporal logic [All84, All83, AF94].
Seizing ideas from Wendler an colleagues [Wen03, Mül02] it is shown how characteris-
tic traits of event/actions can be represented formally thereby obtaining an increased
expressiveness of the detection results.

Building upon the introduced specification means, section 5.3.1 to section 5.3.3 conse-
quently develop the pool of concrete motion patterns for the RoboCup 3D Soccer Sim-
ulation League, working from comparatively simple patterns located on the event level
towards highly-structured action sequences.

Once the complete set of discernible motion patterns has been specified, section 5.4
describes the actual detection of concrete motion incidences and develops a selective and,
as a consequence, less time-consuming detection workflow as compared with a naive brute
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force alternative. The former thereby exploits incidence relationships amongst motion
incidences.

5.1 Qualitative Abstraction

5.1.1 Identifying the Pool of Qualitative Ground Predicates

The first step in the process of qualitative abstraction is the identification of a suitable sub-
set of possible qualitative predicates and their respective set of equivalence classes given
the available set of time series data providing the input for segmentation and classification.

Description of required Raw Input Data

The principal fluent quantitative data for movable/moving objects on the simulated soccer
pitch due to be fed into the qualitative abstraction as stated in section 3.3.2 on page 22
is specified as follows:

Object Locations :
poscart(ob j, ti) = (xob j

t , yob j
t , zob j

t ): the location the movable objects1 (ball, players)
in Cartesian coordinates (R3) within the simulation environment.

Object Motions :
motcart(ob j, ti) = (xob j

t , yob j
t , zob j

t ): the motion vector the movable objects (ball, play-
ers) in Cartesian coordinates (R3). For each movable object motion data is available
directly due to the fact that the raw data is compiled by agents within the soccer
simulation rather than extracted from log files [Mie04a, pp.47].
The motion data can be transformed immediatly to an alternate representation in
3D Polar coordinates as motpol(ob j, ti) = (θob j

t ,φob j
t ,ρob j

t ) where the distance θob j
t

refers to the motion velocity, the azimuth φob j
t refers to the motion direction in the

xy-plane and, finally, the elevation ρob j
t refers to the motion inclination/declination.

Play Mode :
playmode(t) = modet: the momentary modus of play in the game being simulated,
specified as scalar (R).

The aforementioned principal data about respective location and motion of a single
object provides a suitable starting point for the compilation of immediatly manifest zero-
(denoted by P0) and univalent qualitative predicates2 (denoted by P1). The compilation
of bivalent predicates (denoted by P2) presupposes in addition the common consideration
of location data for pairings of spatially related objects in a dynamic scene.

Spatial Orientation Relation :

∆pos
cart(ob j1, ob j2, t) = poscart(ob j2, t)− poscart(ob j1, t): the difference vector (ob j1

to→
ob j2) of the location of two scene actors in Cartesian coordinates (R3).

1 The term ’movable object’ constitutes a discrimination from static, immovable objects in a dynamic
scene (environment → goal posts). The distinctive feature of ’movable objects’ is the principle ability
to change their location over time, either due to own initiative (agents → soccer players) or as a
consequence of external action (passive objects → ball)

2 The method of counting that is applied the distinction of qualitative predicates in equivalence classes
refers to the number of objects a predicates alludes to.
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As for the velocity, ∆pos
cart(ob j1, ob j2, t) can be transformed immediatly to a repre-

sentation in Polar coordinates: ∆pos
pol (ob j1, ob j2, t) = (θ∆(1,2),φ∆(1,2),ρ∆(1,2)) where the

distance θ∆(t) refers to the distance between the centers of ob j1, ob j2. The azimuth
φ∆(t) refers to the spatial orientation relation of ob j2 with respect to the reference
ob j1 in the ground plane. Finally, the elevation ρ∆(t) refers to the spatial orientation
relation of ob j2 with respect to ob j1 along the height dimension.

Beyond that, the combined contemplation of quantitative input data for two successive
points of measurement provides a suitable input for the classification of value trends.

Motion Alteration & Acceleration :
∆vel

cart(ob j, ti−1, ti) = velcart(ob j, ti)− velcart(ob j, ti−1) describes the alteration of the
motion of a scene actor in two consecutive points of measurement as difference
vector in Cartesian coordinates (R3).
∆vel

cart(ob j, ti−1, ti) can be transformed immediatly to a representation in polar coor-
dinates ∆vel

pol(ob j, ti−1, ti) = (θ∆(t),φ∆(t),ρ∆(t)). The distance θ∆(t) attracts particular
interest as it represents the acceleration/deceleration of the scene actor ob j in
∆(ti−1, ti).

Association of Time Series Data to Qualitative Predicates

For the concrete qualitative abstraction, implemented for this thesis, the following subset
of the presented raw data is chosen as input for the process of qualitative abstraction.
Due to the fact that the data is processed gradually in consecutive classification passes,
a time series notation is used which is based on a formalization by Boronowski [Bor01,
p.68].

Definition 5.1 (Time Series) A time series is a finite tuple set
Z = {〈t1, y1〉, 〈t2, y2〉, . . . 〈tn, yn〉}.n ∈ N whose elements 〈ti, yi〉 ∈ Z constitute a value
run for a function f (ti) = yi over a finite set of successive time points ti ∈ T. yi can
comprise both a single scalar value or a collection of scalar values such as ai, bi. In the
first case, the time series is univariate, in the latter multivariate. "

Each family of time series – one for each single movable object or pairing of movable
objects – is associated with its qualitative target predicate. For each such predicate, the
codomain in terms of the set of equivalence classes SYMp is specified.

X,Y-Position : posx,y(ob j) = {〈t1, xob j
1 , yob j

1 〉, . . . , 〈tn, xob j
n , yob j

n 〉} . n ∈ N

These multivariate time series are used for the successive classification of movable
object residence regions with the univalent predicate
in_region(obj, symreg) ∈ P1 . symreg ∈ SYMregions.
for the discrete time points t1, . . . , tn.

Height posz(ob j) = {〈t1, zob j
1 〉, . . . , 〈tn, zob j

n 〉} . n ∈ N

These univariate time series are used for the successive classification of movable
object’s height above ground level with the univalent predicate
z_position(obj, symheight) ∈ P1 . symheight ∈ SYMheight

for the discrete time points t1, . . . , tn. As the soccer players within the simulation
reside on ground level during the whole simulation this predicate is only meaningful
for the soccer ball.

http://www.robocup.org
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Velocity vel(ob j) = {〈t1, velob j
1 〉, . . . , 〈tn, velob j

n 〉} . n ∈ N
where velob j

t ≡ θob j
t in motpol(ob j, t)

These univariate time series are used for the successive classification of movable
object velocities with the univalent predicate
velocity(obj, symvel) ∈ P1 . symvel ∈ SYMvelocity

for the discrete time points t1, . . . , tn.

Motion Direction (X,Y)-plane :

mot_dirx,y(ob j) = {〈t1, mot_dirob j
1 〉, . . . , 〈tn, mot_dirob j

n 〉} . n ∈ N
where mot_dirob j

t ≡ φob j
t in motpol(ob j, t)

These univariate time series are used for the successive classification of a movable
object’s motion direction in the ground plane with the univalent predicate
motion_dir(obj, symdir) ∈ P1 . symdir ∈ SYMdirs

for the discrete time points t1, . . . , tn.

Rise/Fall mot_dirz(ob j) = {〈t1, mot_dirob j
1 〉, . . . , 〈tn, mot_dirob j

n 〉} . n ∈ N
where mot_dirob j

t ≡ ρob j
t in motpol(ob j, t)

These univariate time series are used for the successive classification of the inclina-
tion/declination of the motion of a movable object with the univalent predicate
z_position_trend(obj, symrise) ∈ P1 . symrise ∈ SYMrise

for the discrete time points t1, . . . , tn. Analogous to the state of affairs for z_position(ob j, symheight),
this predicate is also only meaningful for the ball.

Distance dist(ob j1, ob j2) = {〈t1, dist(ob j1,ob j2)
1 〉, . . . , 〈tn, dist(ob j1,ob j2)

n 〉} . n ∈ N
where dist(ob j1,ob j2)

t ≡ θ∆(1,2) in ∆pos
pol (ob j1, ob j2, t)

These univariate time series are used for the successive classification of the symmet-
ric distance between two movable objects with the bivalent predicate
distance(obj1,obj2, symdist) ∈ P2 . symdist ∈ SYMdist

for the discrete time points t1, . . . , tn.

Spatial Orientation (X,Y-plane) :

s_orientation(ob j1, ob j2

= 〈t1, s_orientation(ob j1,ob j2)
1 〉, . . . 〈tn, s_orientation(ob j1,ob j2)

n 〉}. n ∈ N

where s_orientation(1,2)
t ≡ φ∆(1,2) in ∆pos

pol (ob j1, ob j2, t).
These univariate time series are used for the classification of the spatial orientation
relation of a secondary movable object with respect to a reference object with the
bivalent predicate
s_orientation(obj1,obj2, symdir) ∈ P2 . symdir ∈ SYMdirs

for the discrete time points t1, . . . , tn.

Acceleration accel(ob j) = {〈t1, accelob j
1 〉, . . . , 〈tn, accelob j

n 〉} . n ∈ N
where accelob j

t ≡ θ∆(t) in ∆vel
pol(ob j, ti−1, ti)

These univariate time series are used for the classification of movable object accel-
eration/deceleration with the univalent predicate
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acceleration(obj, symacc) ∈ P1 . symacc ∈ SYMacc

for the discrete time points t1, . . . , tn.

Play Mode playmode = {〈t1, mode1〉, . . . , 〈tn, moden〉} . n ∈ N

Finally, this univariate time series whose values already constitute symbolic values
provides the input for the compilation of a suitable play mode representation with
the zerovalent predicate
playmode(symmode) ∈ P0 . symmode ∈ SYMmode

for the discrete time points t1, . . . , tn.

Breakdown of the Codomains for the Chosen Qualitative Predicates

Now that the association from quantitative time series to qualitative predicates used for
the remainder of this thesis has been outlined, the concrete sets of equivalence classes
SYMtype for the respective predicates are elaborated. Moreover, the fundamental, con-
crete interval to class assignments are specified. It should be noted, that the implemen-
tation of a top quality choice of both classes and intervals associations for classification
is a task worthy of further research efforts in its own right (e.g. [MW06, SFL06, Mus00,
GLH04, HCDF95]). Thus, for the scope of the work presented here, it is satisfactory to
compile a sufficient basis which supports the primarily focused analysis of dynamic scenes
based upon the qualitative abstraction. In order to come up with plausible choices for
the equivalence classes and interval partitions, domain expertise was exploited which has
been accumulated in the artificial intelligence working group at the Center of Comput-
ing Sciences (TZI) at the University of Bremen in years of involvement in the RoboCup
Simulation Leagues (both 2D and 3D).

SYMvelo – Velocity The set of equivalence classes for the description of velocities is spec-
ified as SYMvelo = {rest, very_slow, slow, moderate, f ast, very_ f ast, beam} follow-
ing the graduation suggested by Miene for the RoboCup 2D Soccer Simulation [Mie04a,
p.76].
Two domain-specific variations from Miene’s graduation proposal exist, however.
First, the class rest entails both absolute motionlessness as well as virtually in-
discernible motion3. Second, due to the peculiarity of the RoboCup 3D Soccer
Server to beam scene actors to enforce the rapid compliance to the rules of the
game, an additional equivalence class beam has been introduced in order to distinct
pseudo-motion via the beam effect from very fast normal movement of scene actors.
However, it should be noted, that it is not possible to safely distinguish every beam
action but only long distance beams that cannot be possibly interpreted as effect
of the natural motion of a movable object.
The concrete partition of the open codomain into intervals and the interval to class
mapping (IC-mapping CSvel) is dependent on the actor type as players and the
ball have different velocity ranges such that a ball which is moving f ast may be
significantly faster absolutely than a player moving f ast as well. This distinction for
classes of movable objects can presupposes a type sensitive comparison of qualitative
velocities which is not required in the scope of this thesis. In [Geh05, p.79–82],
Gehrke considers this problematic as well for actors in the traffic domain.

player CSvel = {〈0,0.05, rest〉, 〈0.05,0.15, very_slow〉, 〈0.15,0.3, slow〉,
〈0.3,0.6, moderate〉, 〈0.6,0.9, f ast〉, 〈0.9,2.0, very_ f ast〉, 〈2.0,∞, beam〉}

3 and thus essentially relaxes Miene’s notion of rest due to the fact that in the RoboCup 3D Soccer
Simulation both agents and particularly the ball seldom come to a complete stop or such stops may
remain unobservable due to noise in the perception
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Figure 5.1: Determination of motion/spatial orientation- and inclination/declination raw
data.

ball CSvel = {〈0,0.07, rest〉, 〈0.07,0.25, very_slow〉, 〈0.25,0.5, slow〉,
〈0.5,0.9, moderate〉, 〈0.9,1.3, f ast〉, 〈1.3,5.0, very_ f ast〉, 〈5.0,∞, beam〉}

For the symvel ∈ SYMvelo the total order relation ≤ is defined such that rest ≤
very_slow ≤ slow ≤ moderate ≤ f ast ≤ very_ f ast ≤ beam.

SYMaccel – Acceleration The set of equivalence classes for the description of acceleration
is reduced to the minimum number of classes required to distinguish deceleration
from constant velocity and acceleration. Analogous to the qualitative velocities
pseudo acceleration due to beam effects is accommodated for with a dedicated
additional equivalence class.
Thus, SYMaccel = {decreasing, stable, increasing, beam}.
The concrete partition of the open codomain into intervals and the IC-mapping
CSaccel is dependent on the actor type as players and the ball have a greater accel-
eration potential than players.

player CSaccel = {〈−∞,−0.08, decreasing〉, 〈−0.08,0.08, stable〉,
〈0.08,2.0, increasing〉, 〈2.0,∞, beam〉}

ball CSaccel = {iv−∞,−0.08, decreasing, 〈−0.08,0.08, stable〉,
〈0.08,3.0, increasing〉, 〈3.0,∞, beam〉}

SYMdirs – Direction Qualitative directions are used to describe both the motion direction
of a reference object and the spatial configuration of a second object with respect
to the reference object from an egocentric point of view.
The description is dependent on the chosen frame of reference (FoR, cf. [Geh05,
p.12] for an overview). With an intrinsic FoR, inherent properties of a scene actor
such as its front side or line of sight define an object-specific reference axis. With
respect to this reference, the 360◦ around the reference object can be partitioned
in a set of equivalence classes and associated with linguistic terms such as front,
left, back. The grain size of the division is dependent on the requirements of the
respective application scenario.
In other scenarios, an extrinsic FoR is predetermined by external factors in the envi-
ronment such as a fixed north pole such that a global object-independent reference
axis exists. A common practice for specification of directions in an extrinsic FoR is
via a compass rose aligned in a certain way with the global reference axis. Possible
graduations comprise two (i.e. north, south), four (i.e. north, east, south, west, the
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four primal points of the compass) and eight classes (i.e. north, northeast, east,
southeast, south, southwest, west and northwest) [Her94, Geh05].
For the concrete application scenario, the RoboCup 3D Soccer Server predetermines
a global, extrinsic FoR via its localization of the left/right half of the soccer pitch
with the reference axis being parallel to the touch lines and showing towards the
right goal. A symmetric, homogeneously partitioned compass rose with

SYMdirs = {north, northeast, east, southeast, south,

southwest, west, northwest}

is aligned with respect to the reference axis as shown in figure 5.1 and superimposed
on the soccer region partonomy in figure 5.2 on page 64.
The choice of eight direction classes is motivated by the desire to determine the
directedness of, especially forward-oriented, pass play with appropriate grain size
such that diagonal pass play (which corresponds to steep passes when seen from
the perspective of the acting team) can be distinguished from forward/backward-
or sideways-oriented play.
The concrete partition of the cyclic codomain into intervals and the IC-mapping
CSdirs is specified as follows:

CSdirs = {〈22.5,67.5, northwest〉, 〈67.5,112.5, west〉, 〈112.5,157.5, southwest〉,
〈157.5,202.5, south〉, 〈202.5,247.5, southeast〉, 〈247.5,292.5, east〉,
〈292.5,337.5, northeast〉, 〈337.6,22.5, north〉}

SYMdist – Distance As for the directions, the description of the qualitative distance be-
tween two scene actors is also dependent on the FoR. As the distance is independent
from the object properties such as the spatial extension due to the fact that the
scene actors all possess spherical physical bodies and can be conceptually thought
of as point-based, an absolute FoR is a given for the concrete application scenario.
The grain size of the equivalence classes for the distance is chosen to suit the
particular requirements of the RoboCup 3D Soccer Simulation an can be specified
as SYMdist = {touch, very_close, close, medium, f ar}. The denotation of the first
distance class as touch is a bit misleading as it stands for immediate proximity of two
actors which entails immediate contact as well as extremely close proximity. Within
touch distance, players can handle the ball or interact physically with other agents
on the field. A distinct distance class very_ f ar is neglected due to the attentional
focus of the qualitative abstraction described in section 5.1.6 on page 82.
For the symdist ∈ SYMdist the total order relation ≤ is defined such that touch ≤
very_close ≤ close ≤ medium ≤ f ar.
The concrete partition of the open codomain into intervals and the IC-mapping
CSdist is specified as follows:

CSdist = {〈0,0.55, touch〉, 〈0.55,1.15, very_close〉, 〈1.15,2.35, close〉,
〈2.35,5.05, medium〉, 〈5.05,∞, f ar〉}

The interval partition is compliant with cognitively motivated basic principles for the
specification of distance systems that have been introduced by Hernández et al. in
[Her94], namely the monotonicity principle4 and the principle of range restriction5

(cf. [Geh05, p.14–15] for an introduction to distance systems).
4 The monotonicity principle demands that the interval associated with a successive distance class must

always be at least as big as the interval associated with the momentary distance class.
5 This principle demands that each interval associated with a distance class is at least as big as the

distance from the origin to the lower bound of the interval
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SYMrise – Inclination/Declination As the application scenario for the qualitative abstrac-
tion is the RoboCup 3D Soccer Simulation, a set of equivalence classes is required
that describe the vertical motion trend of scene actors, in particular the ball, in terms
of its inclination or declination behavior. As for the directions in the ground plane,
the 3D Soccer Server provides an extrinsic FoR via the simulated gravitational forces
the physical objects in the simulation environment are subjected to. The codomain
of input values is [−90◦, . . . ,90◦] where −90◦ corresponds to a straight fall to the
ground6 and 0deg corresponds to a motion parallel to the ground7 (cf. figure 5.1 on
page 60).
The set of equivalence classes is specified as:

SYMrise = { f alling_ f ull, f alling_medium, f alling_light, stable,
rising_light, rising_medium, rising_ f ull}

The grain size has been chosen such that through the inspection of the inclination
of a kicked ball, it is possible to infer whether the ball has been kicked flat on the
ground, low, medium or high. The distinct equivalence classes for falling motion
have been introduced to retain symmetry.
The concrete partition of the open codomain into intervals and the IC-mapping
CSrise is specified as follows:

CSrise = {〈−90.0,−60.0, f alling_ f ull〉, 〈−60.0,−30.0, f alling_medium〉,
〈−30.0,−4.0, f alling_light〉, 〈−4.0,4.0, stable〉, 〈4.0,30.0, rising_light〉,
〈30.0,60.0, rising_medium〉, 〈60.0,90.0, rising_ f ull〉}

SYMheight – Height The set of equivalence classes for the description of a scene actor’s
height above ground level is specified as
SYMheight = {ground_level, low, medium, high}. The grain size has been chosen
as a compromise such that a suitable class distinction is a given which is not overly
fine but still allows to coarsely reconstruct ball motion in terms of flight curves (i.e
ground_level → low → medium → low → ground_level → . . .).
The concrete partition of the open codomain into intervals and the IC-mapping
CSheight is specified as follows:

CSheight = {〈0,0.35, ground_level〉, 〈0.35,1.5, low〉,
〈1.5,3.0, medium〉, 〈3.0,∞, high〉}

SYMregion – Region The set of equivalence classes for the description of scene actor
residence realizes a spatial partonomy of the soccer environment which leans both
on regions and markings that determined by the rules of the game for the Robo-
Cup 3D Soccer Simulation [FIF06, pp.6, law1, the field of play] and are influenced
considerably by tactical evaluation interests.
On the coarsest level, the region classification must allow for a distinction between
outer- and inner field. For tactical evaluation of the course of the game it must be
further possible to distinguish between wing positions or center positions.
In [Mie04a, p.89], Miene suggests a twofold distinction of the respective wing (i.e.
westwing) and, explicitly accommodating for the special relevance of the penalty
area, a fourfold distinction of the central area confined by the wings (i.e. center) via
a subdivision at the halfway line. For the wings the subdivision leads to distinctions

6 i.e. there is no horizontal motion part
7 i.e. there is no vertical motion part
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such as (westwing_south vs. westwing_north). For the center area the distinc-
tions are (penaltyArea_south, center_south vs. center_north, penaltyArea_north).
Miene adds the goal areas which are located within the respective penalty area.
The region classification, implemented for this thesis, is based on the partonomy
from Miene. However, the partonomy is refined such that a central area is defined
not only along the field width but also along the field length as shown in figure 5.2
on the following page. The finer grain size in the center of the field was introduced
due to the observation during recent international RoboCup championships that the
game is often is the most active in the middle field as both teams try to bring forward
the ball deeper into the field half of the adversary team. Due to the implemented
set of detectable motion patterns (cf. section 5.3.2 on page 95) the goal area can
be neglected.
The resulting set of equivalence classes for the residence regions can now be specified
as:

SYMregion = {westwing_south, westwing_center, westwing_north,

penaltyArea_south, center_south, center, center_north,

penaltyArea_north, eastwing_south, eastwing_center,
eastwing_north, outer_ f ield}

The quantitative boundaries of the respective regions classes are shown in figure 5.2
on the following page. As for the classification of regions, a multivariate time series
(x,y-positions) is processed which demands a two-tier classification process outlined
as final part of section 5.1.3, rather than a direct mapping, the specification of a
concrete CSregion is delayed for the time being.

SYMmode – Play Mode The set of possible play modes that can occur within the RoboCup
3D Soccer Simulation is specified as:

SYMmode = {be f ore_kicko f f , playon, gameover, kicko f f _le f t,
kicko f f _right, kickin_le f t, kickin_right, goal_le f t,
goal_right, goalkick_le f t, goalkick_right, cornerkick_le f t,
cornerkick_right, o f f side_le f t, o f f side_right}

Before the time series data is fed into the classification process outlined in section 5.1.3
on the next page in each qualitative abstraction pass, suitable time series transforma-
tions [Bor01] can be applied in order to remove outliers in the value run of a time series
or suppress noise seizing smoothing operators such as weighted or exponential moving
average filters.

5.1.2 Derived Qualitative Ground Predicates

Based on the pool of qualitative ground predicates that has been introduced hitherto,
further predicates can be derived which bear noteworthy importance for the compilation
of the extensive motion patterns developed later in this chapter in section 5.3. These
predicates are concerned with the ball control situation (viz. ball free, exclusive ball control
and struggle for ball supremacy) and can be computed for a certain qualitative abstraction
pass via an evaluation of the z_position(. . .) and distance(. . .) ground predicates.

To begin with, the ball can only be controlled by the soccer players on the pitch whenever
it is not airborne but rather located on ground level, expressed as z_position(ball, symheight).
Whenever the ball is on the ground, the number of agents for which the condition
distance(ball, player, touch) is satisfied determines the state of affairs with respect to
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Figure 5.2: Schematic overview of the region partonomy which is used for the classification
of residence regions with information of the respective region boundaries. Superimposed
on the region overview is the global compass rose that is aligned with the x-coordinate
axis that points from the left to the right side of the soccer pitch.

ball control. If no player is in touch distance or the ball is airborne, the control situation
is described as f ree_ball(). If a single player (pl) is in touch distance, it is described
as x_ball_control(pl). Otherwise multiple players reside in touch distance and the ball
control situation is described as f ight_ f or_ball().

5.1.3 Categorical Classification with Flexible Bounds

In the preceding section, the details of the concrete qualitative abstraction, the set of qual-
itative ground predicates and their respective set of equivalence classes have been worked
out. Subsequently, the general classification modus operandi for the transformation from
preprocessed quantitative time series (→ values) to qualitative time series (→ symbols,
classes) is introduced.

Basic Ideas for a Stable Classification

In [SWW05, FSW04], Steinbauer et al. outline their approach for the compilation of a
qualitative knowledge base for autonomous robots in the RoboCup Middle-Size League.
The approach is geared to stability in the classification results in the face of slight en-
vironmental variations such as changing lighting conditions and the coarse, somewhat
unreliable character of the perception of the environment based on an imperfect set of
sensors.

The fundamental classification scenario wrought by Steinbauer and colleagues seems
straight forward at first glance. For their qualitative world model Steinbauer et al. populate
their knowledge base with a pool of simple, n-ary ground predicates p(Objn) such as
inReach(Obj) [FSW04, p.4], each with a binary truth value. For any particular predicate,
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these truth values can be understood as the two possible classes associated with the
lower/upper half of the open codomain of the univariate time series used as classification
input. Central for the classification is the fixed location of the threshold point where the
codomain is split. The task of the classifier in each invocation is to determine on which
side of the threshold the current input is residing.

Problems arise, once successive input values linger in immediate proximity to the fixed
threshold such that repeated, rapid oscillations among the truth values occur. This sce-
nario is encountered frequently, in particular under imperfect vision, even though only
subtle change actually occurs in the environment/input data.

In [SWW05, FSW04], Steinbauer et al. seek for a pragmatic solution suitable to mitigate
the oscillation problem, and resort to the principle of a Schmitt trigger8 as a method of
resolution borrowed from the domain of electrical engineering and signal processing which
is based upon a simulation of the hysteresis property.

Generally speaking, hysteresis describes a property of, usually physical, systems which do
not react immediatly to forces applied to them but rather exhibit a noteworthy aspiration
to retain their momentary system state which depends on the respective, immediate history
of the system.

A Schmitt trigger is a simple electronic circuit with two possible states which exhibits
the hysteresis property in its switching behavior. Instead of implementing a fixed boundary
between lower and upper state, two distinct thresholds are used. Which one of those is
currently active is determined by the current state. Using a simple thermostat example,
the switching behavior can be described as follows: A thermostat controlling a heater
may turn the heater on when the temperature drops below A degrees, but not turn it
off until the temperature rises above B degrees where A < B. Thus the on/off output of
the thermostat to the heater when the temperature is between A and B depends on the
history of the temperature. This prevents rapid switching on and off as the temperature
drifts around the set point.

Steinbauer et al. replace the fixed threshold value with a flexible threshold that is
determined for each employment of the classifier by the hysteresis function f b. This
function implements the principle of a Schmitt trigger with a flexible bound centered
around an orientation threshold tbase, where the extend of the flexibility is expressed by
the offset ε9. For each particular employment of the appropriate classification function,
f b is evaluated in advance in order to obtain a concrete threshold as follows. Let sym f b

lower
denote the class associated with the interval below tbase and let symin denote the class
found in the previous classification cycle.

f b(symin) =
{

tbase + ε : i f symin = sym f b
lower

tbase − ε : otherwise

The classification based on flexible bounds for the predicate inReach(Obj) as introduced
by Steinbauer et al.10 can now be defined as:

C(inReach(Obj), M, symlast) =
{

true : i f dist(Sel f , Obj) > f b(symlast)
f alse : otherwise

In figure 5.3, the stabilization effect of applying predicate hysteresis is visualized. The
choice of the offset value is a critical issue as its value determines the appreciation of
values between desired state persistence and required change dynamics. The benefit of
the introduction of predicate hysteresis was substantiated successfully via empirical test
series as described in [SWW05, pp.3].
8 The concept of the Schmidt trigger was originally published in: Otto H. Schmitt, A Thermionic Trigger,

Journal of Scientific Instruments 15 (January 1938): 24-26.
9 Setting ε = 0 effectively turns fb into a common, fixed threshold.
10 in a slightly different notation [SWW05, p.3]
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Figure 3: Evaluation of the predicate inReach using a hysteresis function.

Figure 5: Example robotic soccer situation. Image is a
screen-shot of Simsrv [5], a Middle-Size league simulator.
Connected agents are running the implementation of the
described planning framework.

• Graceful degradation is achieved, as even in situations
where the robot encounters errors in its data it should
be able to continue operating.

• High-level robot programming is greatly simplified for
human operators.

• The size of the search space for the planning problem
is cut down significantly.

• Qualitative models are able to cope with uncertain
and incomplete knowledge.

• A qualitative model equals an infinite number of nu-
meric models

Example
This section shows a simplified scenario in robotic soccer.
The soccer robot in Figure 5 depicted by the hexagon is
the planning agent, there are two opponent robots to the
right. Simplified, the agent has the following model of
the current world state:

(Left(OwnGoal)∧Ball(Ball)∧Ahead(OpponentGoal)∧
Attacker()∧Ahead(Ball)∧Goal(OwnGoal)∧
NextTo(OwnGoal)∧ Left(OpponentGoal)∧Goal(OpponentGoal)∧
Left(Ball)∧Behind(OwnGoal)∧Heading(OpponentGoal))

Knowledge Representation Constants used in this
context are the main objects involved in playing soccer:

Ball

OpponentGoal

OwnGoal

Ball(x) and Goal(x) are static predicates describing
objects. Left(x), Right(x), Ahead(x), Behind(x) are
relative disposition predicates that are used to choose
appropriate goals.

BallSensed indicates whether the ball is placed in front
of the robot’s ball control device, and is set by a sensor.

InReach(x) Indicates that object x is within a certain
distance to the robot, i.e., its focus of attention.

LinedUp(x,y) Indicates whether two objects are in
line with the agent.

Reachable(x) is defined as
∀x(InReach(x)∧LinedUp(Ball, x)∧BallSensed() ↔
Reachable(x))

IsAt(x,y) Indicates whether the object x is at the po-
sition y.

Distinct positions are labeled and can be used for qual-
itative reasoning as well. For example, strategic posi-
tions such as a good defense position for a robotic soccer
robot can be used just like any other symbol. A descrip-
tion for such a position could look like so:
IsAt(Self, DefensePosition) ↔
Blocked(OwnGoal, Ball)∧ InReach(OwnGoal).
In this sentence Self stands for the planning agent. Such
positions need to be somehow mapped back to explicit
spatial information in order to execute actions appropri-
ately. This mapping is implemented via the potential
field method proposed in [6].

Actions This section lists actions that are relevant for
finding a solution to the given example. Action descrip-
tions are given in STRIPS-like form [7], i.e., they consist
of a precondition that has to be fulfilled in order to exe-
cute the action, and an effect that will be fulfilled after
executing the action.

Aim:

Parameter: target

Precondition: ¬BallSensed()∧ InReach(Ball)

Effect: LinedUp(Ball, target)

Figure 5.3: Evaluation of the predicate inReach using a hysteresis function with tbase− ε =
1.0m and tbase + ε = 1.0m. [FSW04, p.4]

In its standard form the offset value ε remains a fixed property of the associated function
f b. However, in [SWW05, p.3], Steinbauer and colleagues point out that it is feasible as
well to tie the offset value closely to the orientation threshold tbase in the following way:

f b(symin) =
{

tbase · (1 + εrel) : i f symin = sym f b
lower

tbase · (1− εrel) : otherwise

Thus, εrel is effectively tied to the threshold value tbase such that for high tbase the hysteresis
effect is more pronounced.

This is motivated with the egocentric perception of the middle size robots which brings
about a growth of noise in perception as the distance to observed objects grows as well.
Considering that the threshold for a predicate such as inReach(Obj) refers to the distance
between observing agent and Obj the stabilizing effect of the predicate hysteresis should
be adopted as well.

Classification of Univariate Time Series with Open Codomain

The concept of predicate hysteresis seems to lend itself for the implementation of a
sufficiently stable qualitative abstraction and is thus adapted for general classification of
univariate time series data where the respective input codomain is segmented into n > 2
parts, associated with an equal number of equivalence classes collected in a set SYMi,
amongst which classification results may vary11. In the following, means to handle both
open and cyclic codomains are worked out as both types of codomains are represented
in the time series to be processed in the qualitative abstraction. While time series that
encode velocities or distances feature open codomains, the cyclic counterpart is featured
in time series referring to motion directions and spatial orientation relations.

The classification of univariate time series with open codomain is discussed first. From
a formal point of view, a hysteresis-enabled classifier for an open codomain can be defined
as a tuple:

Classi f ier1
open = 〈T,CSopen,SYM, ε, icprev, icde f , classi f yopen〉 (5.1)

In this tuple, T refers to a list of thresholds in ascending order which partition the
complete codomain into intervals. This list must contain at least two pseudo-thresholds
t−∞ and t∞, such that in the default case12 the whole codomain can be understood as a
single interval bounded by the aforementioned pseudo-thresholds.

11 such as SYMdist = {touch, very_close, close, medium, f ar}, (cf. section 5.1.1 on page 56)
12 No custom thresholds added in addition to the pseudo thresholds
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Algorithm 1 classi f yopen(val) returns a class
inputs: CSopen, non-empty list of successive ic-mappings

icprev ∈ CSopen, recent ic-mapping
ε, fixed hysteresis size
val ∈ Q, numerical input for the classification procedure

local variables: iccurr = 〈tlow, exlow, tup, exup, sym〉, current ic-mapping
1: iccurr ← icprev
2: if ¬ entails(iccurr, var) then
3: if val < tlow then
4: while ¬ entails(iccurr, val) do
5: iccurr ← predecessor(iccurr)
6: end while
7: contract(icprev)
8: tup ← tup + ε ; exup = true
9: else

10: while ¬ entails(iccurr, val) do
11: iccurr ← successor(iccurr)
12: end while
13: contract(icprev)
14: tlow ← tlow − ε ; exlow = true
15: end if
16: end if
17: icprev ← iccurr ; return sym

Algorithm 2 contract(ic) returns void
inputs: ic = 〈tlow, exlow, tup, exup, sym〉 ∈ CSopen, ic-mapping to be contracted

1: if exup = true then
2: tup ← tup − ε ; exup = f alse
3: end if
4: if exlow = true then
5: tlow ← tlow + ε ; exlow = f alse
6: end if

CSopen is a non-empty list of unique extended variation of interval→class mappings
(short: ic-mappings) that are formally defined as

ic = 〈tlow, exlow, tup, exup, sym〉 (5.2)

where tlow, tup ∈ T, tlow+1 = tup, exlow, exup ∈ Bool, sym ∈ SYM. SYM denotes the
collection of target classes from the ic ∈ CSopen.

Successive ic-mappings ici, ic j ∈ CSopen share a common threshold as upper/lower bound
such that tn ∈ Topen = ti

up = t j
low. The inner thresholds in T are not fixed values. Rather,

they can be displaced due to hysteresis-induced, temporary, one-side expansion of the
current ic-mapping iccurr ∈ CSopen by the fixed hysteresis size ε which retains the same
meaning as in the preliminary approach by Steinbauer and colleagues. To ensure consis-
tency with respect to the order of elements in T, the hysteresis size ε is constrained such
that ε3 minargsici∈CSopen (width(ici)). The notation 3 is to convey that the respective
interval sizes should be large compared to the threshold flexibility.

The concrete policy of hysteresis-enabled classification for open codomains is explained
subsequently. To begin with, classi f yopen : Q× SYM→ SYM denotes the classification
function. In dependence of a previous classification result stored in icprev ∈ CSopen, in
each employment this function determines the particular ic-mapping entailing the single
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Figure 5.4: Schematic open codomain classification of velocities for four successive points
in time. The stabilizing influence of the hysteresis effect becomes apparent in the third
step where a premature interval hop is suppressed until a stronger value trend is found.

numerical input which is fed into the classifier, and thus determines the associated class. In
the process, classi f yopen implements the hysteresis functionality, seizing the ideas outlined
in the previous section and lifts them to the general case. The mode of operation of
classi f yopen is outlined in algorithm 1.

The last element of the classifier tuple unmentioned so far, is the default IC for the
classifier which is set upon initialization/reset.

Due to the implemented interval expansions and extractions, a persistence of the clas-
sifier to remain in its current state is established with respect to the direction from which
the current interval was entered. Thus, oscillation between neighboring intervals can be
mitigated to a certain extend which is determined by the choice of the hysteresis size ε.
At the same time, no persistence is established in the direction of the most recent interval
transition. Thus, successive iteration over neighboring intervals with a fixed transition
direction is not constrained by the hysteresis effect. Figure 5.4 illustrates the generalized
system of adaptable interval bounds in an schematic example, showing four successive
employments of the classifier.

Classification of Univariate Time Series with Cyclic Codomain

Now that the classification for time series with open codomains has been introduced,
the focus is shifted towards the treatment of classification for time series with cyclic
codomains. The latter time series differ from the open equivalent in that possible values
linger in a set interval I = [valmin, valmax[ (e.g. Ideg = [0◦,360◦[) where valmax ≡ valmin.
Cyclic codomains feature a discontinuity point t jump where the lowest possible values are
in immediate proximity to the highest possible values. The adaption of the methodology
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Figure 5.5: Schematic cyclic value range classification of (motion) directions with an
eight-segment wind rose for a single point in time. ic8 associated with the class north
comprises the special interval which bypasses the discontinuity point t jump found at 0/360
degrees.

for open codomains in order to obtain

Classi f ier1
ring = 〈Tring,CSring,SYM, ε, icprev, icde f , classi f yring〉 (5.3)

comprises two major tasks. First, a means to deal with the discontinuity point in the
specification of CSring is required. Second, a suitable classification function classi f yring
needs to be specified.

Due to the ring characteristic of cyclic codomains, Tring, unlike Topen, does not contain
pseudo-thresholds such as t∞. Instead, the existence of a minimum of two regular thresh-
olds is mandatory such that the codomain can be partitioned seamlessly in at least two
intervals. To ensure consistency, it must hold that ∀ti ∈ Tring : dist(ti, t jump) > ε. Thus,
in particular, thresholds cannot coincide with the discontinuity point.

CSring is a non-empty ring of successive ic-mappings as specified in Equation 5.2. The
construction thereof differs from its sibling CSopen in a single, yet significant aspect. For
CSopen with Topen = 〈t1, . . . , tn〉13 pairs of successive thresholds 〈ti, ti+1〉 . i ∈ {1, . . . , n−
1} form the basis for the ici ∈ CSopen.

For CSring, an additional icn over the interval 〈tn, t1〉 is required which bypasses the
discontinuity point. Contrary to the normal bounds, for this special ic-mapping, it holds
that the lower bound tlow is indeed bigger than the upper bound tup. The entailment
function used for both open and cyclic value ranges accommodates for this singularity as
shown in algorithm 4.

The hysteresis-enabled classification for cyclic codomains is brought about by the classi-
fication function classi f yring : Q× SYM→ SYM, specified in algorithm 3. The function
must handle a particularity of classi f yring which is due to the ring structure of CSring. In
case of a transition amongst any two ic-mappings, an incremental iteration over neigh-
boring intervals in either direction from the initial interval eventually succeeds in arriving
at the new entailing target interval. Algorithm 3 accommodates for this fact, choosing
the transition direction determined by the shorter route in order to apply the interval
expansion at the appropriate bound.
13 where t1, tn coincide with the pseudo-thresholds t−∞, t∞
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Algorithm 3 classi f yring(val) returns a class
inputs: CSring, non-empty ring of successive ic-mappings

icprev ∈ CSring, recent ic-mapping
ε, fixed hysteresis size
val ∈ Q, numerical input for the classification procedure

local variables: iccurr = 〈tlow, exlow, tup, exup, sym〉, current ic-mapping
steps = 0, counter for interval hops

1: iccurr ← icprev
2: if ¬ entails(iccurr, val) then
3: while ¬ entails(iccurr, val) do
4: iccurr ← successor(iccurr) ; steps ← step + 1
5: end while
6: contract(icprev)
7: if size(CS)− steps ≤ size(CS) · 0.5 then
8: tup ← tup + ε ; exup = true
9: else

10: tlow ← tlow − ε ; exlow = true
11: end if
12: end if
13: icprev ← iccurr ; return sym

Algorithm 4 entails(icin, var) returns bool
inputs: icin = 〈tlow, exlow, tup, exup, sym〉, ic-mapping

var, value which is either entailed or not
1: if tlow < tup then
2: return (val > tlow && val ≤ tup)
3: else
4: return (val > tlow ‖ val ≤ tup)
5: end if

Two-tier Classification of Multivariate Time Series

Both classification scenarios described so far were laid out for the processing of univariate
time series of quantitative input data. For the largest part, the desired qualitative abstrac-
tion for distinct aspects of motion as well as spatial configurations among objects can
already be achieved, seizing the available methodologies for classification in open- and
cyclic codomains. However, the qualitative abstraction of actor locations on the soccer
pitch into residence regions motivates and presupposes the ability to process multivariate
time series in classification as well. The implementation thereof should benefit from the
enhanced stability due to hysteresis, and build immediatly on the means worked out for
univariate classification. Moreover, bearing the classification of regions in mind as princi-
pal motivation, it should also provide enough flexibility to model heterogeneous regions in
a natural way and focus classification to interesting regions of the classification space (i.e.
the soccer pitch as portion of the simulation basement in the classification of residence
regions).

In order to build upon existing one-dimensional classifiers, a two-tier strategy is employed
for multivariate classification. The underlying idea is to divide the classification problem
for multivariate time series into distinct classification problems for each dimension of the
multivariate input and merge the intermediate results on a superordinate level.

To begin with, a classifier for the processing of multivariate time series can be formalized



in the RoboCup 3D Soccer Simulation League 71

Figure 5.6: Application of multivariate classification of residence regions on the soccer
pitch. Besides and above the pitch the subordinate, intermediate classifiers along the 2
spatial dimensions in the plane are shown. The target class westWingSouth ∈ SYMregion,
comprised by a homogeneous local neighborhood of size 2, is evaluated by a lookup
operation of the intermediate classification result %inter =

(ix3
iy4

)
∈ SYMx × SYMy.

as a tuple:

Classi f iern = 〈(Classi f ier1
{open‖ring})n,CSn, symde f , classi f yn〉 (5.4)

(Classi f ier1
{open‖ring})n describes the vector of dedicated, univariate classifiers for either

open or cyclic codomains, which are each concerned with the intermediate classification of
a single dimension of the multivariate input. These classifiers, which operate independent
of each other, already apply predicate hysteresis and thereby ensure a stable classification
along each particular input dimension.

CSn and symde f are data structures that are used in a subsequent, merging evaluation
of the intermediate classification results. CSn is a set of pairs SYMn → SYM where each
concrete pair associates a possible intermediate result represented as a result vector with
a fixed target class.

CSn is laid out as a partial mapping such that it does not need to contain associations for
all elements %sym ∈ SYM1× . . .×SYMn. Instead, whenever %inter 7∈ SYM1× . . .×SYMn,
it is assumed that the default class specified by symde f applies. This property of CSn

provides the possibility for partial classification of multivariate input.
Furthermore, the associations specified by CSn need not be injective such that for each

association target, there exists exactly a single association key. Instead it is allowed that
homogeneous local neighborhoods in the mapping codomain are associated with the same
target class.
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Algorithm 5 classi f yn(val) returns a class
inputs: (Classi f ier1)n, vector of subordinate univariate classifiers

val ∈ Qn, multivariate input into classification procedure
local variables: inter ∈ SYMn, collector for intermediate classification results

CS, list of mappings SYMn → SYM
de f ault ∈ SYM, default mapping

1: for i = 1 to n do
2: interi ← Classi f ieri : classi f y(vali)
3: end for
4: if ∃〈key, value〉 ∈ CS . key = inter then
5: return value
6: else
7: return de f ault
8: end if

Definition 5.2 (Local Neighbors, Local Neighborhood) Two symbolic vectors
%sym1, %sym2 ∈ SYM1 × . . .× SYMn are local neighbors if %sym1 can be transformed to
%sym2 with transition of the value si ∈ SYMi of a single dimension to an immediatly

neighboring class. A set of vectors %symi is then referred to as a local neighborhood if any
two vectors in the set are connected via local neighbors that are contained in the same set
as well. A homogeneous local neighborhood is a special local neighborhood which does
not encircle completely another local neighborhood. "

Figure 5.7: Examples clarifying the above definition: a. & b. homogeneous local neigh-
borhoods (dark) in SYM2; c. non-homogeneous local neighborhood (dark) ; d. criteria
for a local neighborhood not satisfied.

With a fixed set of univariate base classifiers a fine resolution of the classification can
be achieved using 1:1-mappings in CSn. A coarser classification is achieved using n:1-
mappings from homogeneous local neighborhoods to target classes as well. Mixing both
mapping forms can model a varying resolution of the target classes such that spaces of
higher relevance can be classified finer than spaces of lower relevance.

Both tiers of the mapping process for multivariate time series, the generation of an
intermediate classification vector and the mapping to a target class is entailed in the
classification function classi f yn as shown in algorithm 5.

The classification for multivariate time series has been introduced formally for arbitrary
arity. The classification of residence regions which motivated the dimension extension
from univariate classifiers in the first place can now be handled properly with a multi-
variate classifier of arity 2 that uses two univariate classifiers Classi f ieropen which classify
residence with respect to the x or y-axis of the plane. Figure 5.6 shows an example for
the employment of a region classifier:

Classi f ierRegion = 〈(Classi f ier1
open)2,CS2, symde f , classi f y2〉 (5.5)

Now that means for both the classification of uni- and multivariate time series data
have been worked out, an essential part of the problem of qualitative abstraction has
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been covered. The set of ground predicates has been determined with their respective
set of target classes and seizing the aforementioned ideas for the implementation of the
classification for each classification cycle, predicates such as dist(pl1, ball, low) can be
compiled. In the following those loose predicates obtain a temporal dimension as they are
turned from spatio- to spatio-temporal entities.

5.1.4 Formalisms for the Representation of Time

In spatio-temporal analysis of dynamic scenes as opposed to pure spatial reasoning ap-
proaches the temporal dimension in reasoning is of central importance as dynamics is
change through time.

To start with, a subset of relevant concepts from the interval-based temporal logic
proposed by James Allen in a series of publications [All81, All83, All84, AH90, AF94]
is introduced.The notion of time adopted in this thesis is founded and shown to be in
accordance with Allen’s notions. It is shown how first order predicates that describe
categorical facts about the dynamic scene are associated with a validity interval via the
dedicated logical predicates in order to describe scene continuities/properties. The initial
discussion of Allen is followed by beneficial extension developed by Freksa in [Fre92] which
seeks to mitigate deficiencies in Allen’s logic and proposes effective coarse reasoning based
on semi-intervals.

The concept of time which is adopted for this thesis is presented as a hybrid model which
is based upon intervals as basis concepts, yet acknowledges the concept of time points as
well where appropriate for the application of temporal relations on semi-intervals.

Allen’s Interval Temporal Logic

For his interval temporal logic, Allen naturally adopts the understanding of time as a period
structure and builds upon the time period as single primitive object of discourse and a
primitive relation between two periods, called Meets, whose semantics is direct precedence
such that, if a first intervals meets a second interval, there is no gap in between and the
intervals touch. Allen assumes a linear and unbounded model of time. In the development
of his theory, Allen is concerned with a subset of all conceivable time periods, namely those
which feature a finite temporal extension (left-right-bounded periods) and thus adhere to
his first of a set of five fundamental axioms forming the formal basis for his theory.

Let I‖ the set of all such finite periods and let i, j, k, l, m ∈ I‖, then according to [All83]
the following basic axioms hold:

Axiom 5.1 Time itself is unbounded, i.e. there is neither a start nor an end of time.
∀i ∈ I‖∃ j, k ∈ I‖ : Meets( j, i)∧Meets(i, k)

Axiom 5.2 Succeeding time periods for which the Meets-relation holds can be combined
into a larger period which is the composition of both its constituents.
∀i, j, k, l : Meets(i, j)∧Meets( j, k)∧Meets(k, l)⇒ ∃m : Meets(i, m)∧Meets(m, l)

Allen writes that ”as a convenient notation we will often write j + k to denote the
interval that is the concatenation of the intervals j and k.” [AF94, p.9]

Axiom 5.3 Periods uniquely define an equivalence class for periods that meet them.
∀i, j, k, l : Meets(i, j)∧Meets(i, k)∧Meets(l, j)⇒ Meets(l, k)
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(a) Graphical visualization of Allen’s five axioms
for his interval temporal logic.

(b) Allen’s thirteen possible qualitative relations be-
tween two periods with their respective inverses an
mnemonic labels.

Axiom 5.4 The equivalence classes referred to above also uniquely define the periods.
∀i, j, k, l : Meets(k, i)∧Meets(k, j)∧Meets(i, l)∧Meets( j, l)⇒ i = j

Axiom 5.5 Any two pairs of periods either meet at the same place or either the first or
the second pair of intervals meets at an earlier place in time then its counterpart.
∀i, j, k, l : Meets(i, j) ∧ Meets(k, l) ⇒ Meets(i, l) ⊗ (∃m : Meets(k, m) ∧ Meets(m, j)) ⊗
(∃m : Meets(i, m)∧Meets(m, l))

Based on this compact set of axioms, that are typically visualized as depicted in fig-
ure 5.8a, Allen derives further properties such as the impossibility of any period meeting
itself as theorems.

He also derives the complete range of 13 possible interval relations (TRAllen) which can
hold between any two periods as a consequence of these axioms, all of which in figure 5.8b.
As an example, Be f ore(i, j) is defined as follows:

Definition 5.3 (Before Relation) Let i, j, m ∈ Iparallel, then the Before relation is defined
as: Be f ore(i, j) ≡ ∃m : Meets(i, m)∧Meets(m, j). "

Allen develops a dedicated constraint system, implemented as a composition table which
allows for the following kind of temporal reasoning. Let p1, p2, p3 ∈ I‖ and let further
rela(p1, p2)∧ relb(p2, p3) : rela, relb ∈ TRAllen, than by means of the interval composition
table, it is possible to infer the non-empty disjunction Wn

1 : (n ∈ N)≥ 1 of possible temporal
relations that may hold between p1 and p3 given the knowledge provided by the initial
relations.

Due to the fact, that Allen’s 13 temporal relations are pairwise disjunct such that only
one of them can hold for a pair of intervals, only one of the relations contained in the
result can actually apply at a time, yet in order to determine exactly the correct candidate,
additional information is required.

Allen’s temporal logic may have been initially developed under the assumption of a
continuous time domain it can be successfully applied to discrete time domains as well.
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For the latter, the otherwise universal concept of a period as a structure which can be
recursively, and infinitely decomposed into ever smaller sub-periods is abandoned and the
notion of a smallest indivisible period, the moment, is introduced. Allen writes that ”a
period can be classified by the relationships it can have with other periods. For Example,
we call a period which has no sub-periods (i.e. no period is contained in it or overlaps it)
a moment and a period which has sub-periods an interval.” [AF94, p.10].

The concept of a moment as indivisible atomic interval in a discrete time domain can
be formally defined as:

Definition 5.4 (Atomic intervals (Moments)) Let j, k, i ∈ I‖, and let Imom ⊂ I‖ denote the
set of indivisible, atomic intervals, then such intervals, referred to as moments, are defined
as:
∀i :7 ∃ j, k : Contains(i, j)⊗Overlaps(k, i)⇒ i ∈ Imom ⊂ I‖. "

Once moments have been introduced, seizing Allen’s composition axiom (5.2), time can
be thought of as time line densely packed with consecutive moments. Consequently, each
interval i ∈ I‖ \ Imom can be conceived as a composition of a sequence of moments on
that time line.

Definition 5.5 (Interval Composition from Moments) :
∀i ∈ I‖ : ∃ j1, . . . , jn ⊂ Imom, n ∈ N∧Meets( jn−1, jn) :

n
∑

c=1
jc ≡ i. "

In a discrete simulation environment such as the RoboCup 3D Soccer Server a moment as
introduced by Allen corresponds to the duration of a discrete simulation step. For physical
simulations it is common to associate a certain fixed amount of continuous time (20ms
in case of the soccer simulation) with each moment in order to couple discrete temporal
progress in the simulator (in terms of sim-steps) with continuous temporal progress in the
simulated physical environment.

While Allen’s temporal logic insists that everything that is happening or holding true
in a domain does so for extended intervals of time – however short these may be, thus
negating the possibility of instantaneous action and events as for instance in the situation
calculus, he also states that ”[...] we can define a notion of time point by a construction
that defines the beginning and ending of periods. [...] moments and [time-]points cannot
be collapsed. In particular moments are true periods and may meet other periods.” [AF94,
p.10].

It is stated that any semantic model which allows for these distinctions would be a
possible model of time. Allen suggests a representation for moments and intervals in
a discrete time model where periods are mapped to pairs of integers as in 〈i, j〉 : i, j ∈
Z ∧ i < j. In such a model moments correspond to pairs of the form 〈i, i + 1〉. Time
points on the other hand are represented as simple scalar integers. This representational
semantics has been commonly applied in (e.g. in [Mie04a, Geh05, Lat07]).

In a critical review of Allen’s work, Freksa associates Allen’s set of interval relations
TRAllen with corresponding relations between the beginnings and endings of the related
pair of intervals by means of a comprehensive four-coordinate table as shown in Fig-
ure 5.8 [Fre92, pp.4]. A maximum of two such relations is required in order to uniquely
distinct any of Allen’s 13 interval relations from its siblings.

Freksa’s Extension of Allen’s Temporal Logic

Allen’s interval logic was criticized as being too precise since complete knowledge about the
considered intervals is required as a start which is often not feasible, especially in dynamic
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Freksa Temporal Reasoning Based on Semi-Intervals 6
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Figure 1:  The thirteen qualitative relations between two events characterized by relations

between their beginnings #, " and their endings !, $.

___________________________________________________________________________

The reason that such incomplete information about events suffices for fully characterizing

their qualitative relations is due to two domain-inherent conditions:  1)  the beginnings of events

take place before their endings (# < !, " < $) and  2) the relations <, =, > are transitive.

Without these conditions, 34 = 81 relations between the four beginnings and endings of two

events would be possible.

Figure 5.8: Alternative visualization of Allen’s interval relationships characterized by rela-
tions between their beginnings α, A and endings ω,Ω. [Fre92, p.6.]

domains where for instance only the beginning of an event may be known while the event is
still in progress. A means to reason upon such incomplete knowledge is, however, desirable.
What is more, as the amount of knowledge about the relations of intervals in question
decreases the representational overhead increases in a reciprocal fashion as uncertainty
or missing knowledge about concrete temporal configurations is modeled as disjunction
of possible relationships. ”The representation of incomplete knowledge [...] creates a
cognitively awkward situation: the less we know, the more complex the representation of
what we know becomes.” [Fre92, p.4]. This is why Freksa refers to Allen’s method for
temporal reasoning as fine reasoning.

Freksa does not agree with Allen’s proposal to use intervals as representational primitives
for reasoning about events. As an alternative, he presents an extended concept for tem-
poral reasoning where beginnings and endings of intervals, denoted as semi-intervals are
used as primitives. In accordance with [Fre92, p.5], those semi-intervals can be equated
with the aforementioned time points in a discrete time domain.

Once intervals are represented in terms of their enclosing semi-intervals as in 〈αi,ωi〉 it
becomes clear that various temporal reasoning situation exists where a desired temporal
relation between intervals can be expressed as relations between only a subset of available
semi-intervals. ”In order to determine that Newton lived before Einstein it is sufficient to
know that Newton’s dead took place before Einstein’s birth. It does not help if in addition
we know when Newton was born or when Einstein died.” [Fre92, p.7].

It is shown that it is feasible to perform coarse reasoning based upon a set of relaxed
interval relations (TRFreksa). These relations correspond to disjunctions of Allen’s interval
relations and are thus in general less restrictive than those put forward by Allen (cf.
figure 5.9). Central to Freksa’s work is the concept of conceptual neighbors and conceptual
neighborhood [Fre92, p.8]. For a certain kind of knowledge incompleteness which does not
permit a fine resolution of closely related variants within a neighborhood, knowledge about
temporal entanglement of two intervals is expressed directly via the relations in TRFreksa
on a broader level of granularity which corresponds to conceptual neighborhoods.

Freksa rearranged Allen’s composition table such that conceptually neighboring relations
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Relation Semi-Interval Disjunction of possible
(inverse Relation) Relationships Allen relations
Older(x, y) α < A Before, Meets, Overlaps,
(Younger(y, x)) FinishedBy, Contains
HeadToHeadWith(x, y) α = A StartedBy, Equal, Starts
(HeadToHeadWith(y, x))
Survives(x, y) ω > Ω Contains, StartedBy,
(SurvidedBy(y, x)) OverlappedBy, MetBy, After
TailToTailWith(x, y) ω = Ω FinishedBy, Equal, Finishes
(TailToTailWith(y, x))
Precedes(x, y) ω ≤ A Before, Meets
(Succeeds(y, x))
ContemporaryO f (x, y) α < Ω ∧ ω <

A
Overlaps, FinishedBy,

(ContemporaryO f (y, x)) Contains, StartedBy, Equal,
Starts, During,
Finishes, OverlappedBy

BornBe f oreDeathO f (x, y) α < Ω Before, Meets, Overlaps,
(DiedA f terBirthO f (y, x)) FinishedBy, Contains,

StartedBy, Equal, Starts,
During, Finishes,
OverlappedBy

OlderAndSurvivedBy(x, y) α < A ∧ ω <
Ω

Before, Meets, Overlaps

(YoungerAndSurvives(y, x))
OlderContemporaryO f (x, y) α < A ∧ ω >

A
Overlaps, FinishedBy,

(YoungerContemporaryO f (y, x)) Contains
SurvivingContemporaryO f (x, y) α < Ω ∧ ω >

Ω
Contains, StartedBy,

(SurvivedByAndContemporaryO f (y, x)) OverlappedBy

Figure 5.9: Freksa’s semi-interval relations with corresponding disjunction of possibly
associated Allen-relations.

follow in succession. As it turns out the resulting interval disjunctions in the table always
form conceptual neighborhoods which correspond either to Allen original relations or to
(conjunctions of) Freksa’s semi-interval relations. Freksa shows that coarse reasoning
about temporal coherences based on conceptual neighborhoods is sound and sometimes
more efficient compared to fine reasoning as favored by Allen. Composition tables are
presented for that purpose [Fre92, p.24 & p.29].

It is possible to apply ideas from both Freksa and Allen in several ways. The respective
formalisms can be used to derive new temporal coherences from a given set of initially
known temporal relations of either flavor thus applying the temporal constraint systems
introduced with the respective composition tables. It is also feasible to use only the
representational formalisms in the context of temporal pattern rules as means to relate in
a flexible way the time-dependent constituent concepts such as facts, events and actions.
The latter is the way Allen’s and Freksa’s work finds their way into this thesis.

As the system for spatio-temporal real-time analysis of dynamic scenes under devel-
opment here will be laid-out for concurrent, incremental application with regard to the
normal execution of the soccer simulation, it is mandatory to allow for the use of right-
open intervals whose validity, for a certain sim-cycle of a soccer game, has begun at a
certain moment in the past and is still continuing.

Definition 5.6 (Left-bounded, right-open Intervals) Intervals of the form i = 〈α,∞〉 whose
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Figure 5.10: Conceptual visualization of the time model used throughout the remainder
of this thesis with closed (I‖) and right-open (I') intervals combined.

beginning α is bound to a set point in time but whose duration is considered infinite such
that no explicit ending ω can (yet) be specified, are denoted as left-bounded and right-
open interval i ∈ I'.
For this class of intervals, it holds that:
∀i ∈ I'∃ j ∈ I‖ : Meets( j, i)∧ 7 ∃ j ∈ I‖ : Meets(i, j) "

Thus, the relations introduced by both Allen and Freksa will be applied on intervals
from the broader interval domain I‖∪' ≡ I‖ ∪ I' where the codomain for intervals is
dom(I‖∪') def= Z× (Z∪ {inf}). In order to use the interval relations TRAllen and TRFreksa
appropriately under these conditions the set of semi-interval relations <,=,> is adapted
to reflect the extended codomain and it is further necessary to constrain both Finishes(x, y)
and TailToTailWith(x, y) in such a way that they can only hold for x, y ∈ I‖.

The resulting conceptualization of time used throughout the remainder of this thesis,
can illustrated as in Figure 5.10.

5.1.5 Spatial Predicates with a Temporal Dimension

So far, the representational formalism for time used in this thesis has been introduced
self-sufficiently. However for qualitative abstraction it is mandatory to associate validity
intervals as defined so far with qualitative properties or continuity constraints expressed
in first-order predicate logic such as velocity(ball, fast).

In order to achieve this association Allen introduces the HOLDS predicate in his tempo-
ral logic. The HOLDS predicate has both an assertional and an inferential aspect. From
the assertional point of view, HOLDS allows for expressing assertions about the validity
of time-variant facts such as HOLDS(velocity(pl5, fast), i) . i ∈ I‖ in a very concise, in-
tuitive manner. Furthermore, a conjunction of such HOLDS predicates can be viewed as
fundamental pool of data of a spatio-temporal knowledge base from which further knowl-
edge can be inferred. In its most simplistic form the temporal semantics of the HOLDS
predicate itself can be used which Allen defines as follows:

Definition 5.7 (Homogeneity Property of the HOLDS Relation) :
Let HOLDS(pred, i) : i ∈ I‖ and let further In(i, j)⇔ During(i, j)∨ Starts(i, j)∨ Finishes(i, j),
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then the homogeneity property of the HOLDS relation is defined as:
HOLDS(pred, i)⇔ (∀ j.In( j, i)⇒ HOLDS(pred, j)) "

If a fact holds over a certain interval, it also holds during each sub-interval. Thus the
HOLDS relation specifies a homogeneity constraint for the validity of the associated fact.

Thus if a HOLDS predicate has been asserted for a certain time interval it is possible
to exploit the homogeneity criterion to infer that the same fact held during contained
subintervals. This is the inferential view on the HOLDS-predicate.

In this thesis the dual view upon the HOLDS predicate is reflected explicitly by the
introduction of the FACT predicate which is used for the assertion of new time dependent
facts as a result of the qualitative abstraction. Thus the FACT-predicate covers the
assertional aspect of Allen’s HOLDS predicate. On the other hand, HOLDS is used for
inferential purposes as both predicates are associated as outlined below.

Definition 5.8 (HOLDS Relation expressed in terms of the FACT relation) :
Let i, j ∈ I‖ : HOLDS(pred, i)⇔ ∃FACT(pred, j) : In( j, i)∨ Equals( j, i)

Let i, j ∈ I' : HOLDS(pred, i)⇔ ∃FACT(pred, j) : Older( j, i) "

The reason why the FACT-relation is explicitly mentioned in this concept chapter and
is not treated as an implementation detail is that both HOLDS and FACT can be used
gainfully side by side in the specification of spatio-temporal patterns for high-level events,
actions and action sequences due to their respective semantics. Using HOLDS, it can
be determined simply whether or not a fact was valid over a certain period of time.
Using FACT however it can be determined whether or not a fact was valid over exactly
a certain period of time. Thus, while the HOLDS-relation refers to general continuity,
FACT-relations refer to maximal continuity.

Interval Assembly Strategies

Via the process of qualitative abstraction which is applied incrementally for the complete
course of simulated soccer games, quantitative time series are by and by transformed
into accordant qualitative time series – a series of symbols for each cycle, using the
classification facilities that have been outlined in the initial parts of section 5.1. It is
then compulsory to decide for an interval assembly policy that controls how temporally
extended qualitative ground facts are compiled, starting from loose sequences of symbol
values.

A common strategy, applied exemplary in the approaches by Miene [Mie04a, pp.57]
and Gehrke, is made up of an explicit lengthening of the validity intervals of existing
predicates. Using this technique for each predicate, for each classification cycle, there is
always the explicit requirement for exactly one interaction with the quantitative knowledge
base which comprises either a lengthening operation (continuity) or the creation of a new
fact (classification hop). Thus even if the circumstances of the case do not change, action
is required nevertheless.

In this thesis a different policy for interval creation and maintainance is applied which
was motivated in part by considerations by Gehrke with respect to possibilities to put
notably less strain on the knowledge base interaction [Geh05, p.138]. Whenever new
facts are created due to a classification hop, the fact is associated with an unbounded
validity in that only the start of the validity interval is specified explicitly while the ending
is left open. Having established such a new fact, no further interaction is required while
the fact remains valid. Only when another classification hop occurs, is the open interval
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Figure 5.11: Example Scenario for use of the C_HOLDS predicate: The ball passes a
resting player, being close, very close, in touch, very close and finally close again to the
player in immediate succession. For the whole duration of the passage, the C_HOLDS
relation holds as touch ≤ close and very_close ≤ close.

closed explicitly now that the ending has become known, and a new open interval is
created.

It is assumed that classification hops are unlikely to occur with very high frequency.
Thus, it is probably significantly cheaper to perform two knowledge base interactions
only upon change than one interaction in every single cycle especially with regard to the
real-time bias of the developed recognition module. Since this assumption drives the
design decision for the explicit closing-policy, it is subject of evaluation in section 7.4.1
on page 137.

As a result of the fact creation policy for each particular moment, the qualitative knowl-
edge base may contain two types of asserted facts in the fact pool F′. First, facts that
have been valid for a distinct duration in the past
(e.g. FACT(velocity(ball, fast), 〈s1, e1〉) . s1, e1 ∈ Z) and, second, those facts that have
begun to hold sometime in the past have retained validity so far
(e.g. FACT(playmode(playon), 〈s2, inf〉) . s2 ∈ Z) (cf. figure 5.10).

A relaxed HOLDS Predicate for Qualitative Subsumption

A closer examination of the capabilities of the standard HOLDS predicate, applied as
introduced by Allen, reveals the following limitation which somewhat constrains its useful-
ness with respect to the formal specification of spatio-temporal patterns. An expression
such as HOLDS(distance(ball,pl6, close), i) is true if and only if the ball retains a position
such that for the whole duration of the considered interval the distance becomes neither
larger (e.g. distance(ball,pl6,medium)) nor lesser (e.g. distance(ball,pl6, very_close)) but
rather remains exactly close.

By all means situations exist where the desired semantics that should be expressed is
covered through use of the holds-relation. In other situations however, it seems desirable
being able to specify a slightly relaxed statement of affairs. If we consider the dribbling
as a paradigmatic example, it makes sense to introduce the constraint that during each
consecutive self assist executed by the dribbling player, the ball should retain in a distance
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from that player which is no larger than close rather than exactly close14.
In order to fulfill the demand for a somewhat relaxed interpretation of the HOLDS-

predicate, a new predicate, named containment holds or short C_HOLDS, is introduced.
In order to simplify the specification the following temporal relation, let:

InOrEquals(i, j) ⇔ In(i, j) ∨ Equals(i, j). The formal semantics for the C_HOLDS-
relation can now be specified both for i1 ∈ I‖ and i2 ∈ I'. Due to the fact that contrary
to the normal HOLDS-relation, we are concerned with a contemplation about the dynam-
ically changing value of a given predicate, the notation for predicates in the following
definitions adheres to the following schema:

FACT(

qual. predicate
︷ ︸︸ ︷
distance︸ ︷︷ ︸

UID
( ball,pl6︸ ︷︷ ︸
reference

, close︸︷︷︸
value

), i ).

Definition 5.9 (C_HOLDS for the Closed Interval Codomain I‖) :
Let pred(re f , arg) ∈ P and let arg, arg1, . . . , argn ∈ SYM where SYM denotes a set
of equivalence classes for which the total ordering relation ≤ is defined. Let further
i, i1, . . . , in ∈ I‖. Let Vn

c=1(FACT(. . .)) denote a conjunction of atomic facts f ∈ F′. Then,
the Containment Holds relation is defined as:

∀i ∈ I‖ : C_HOLDS(pred(re f , arg), i)⇐

∃
n̂

c=1
(FACT(pred(re f , argc), ic)) . c, n ∈ N :

∀c < n : Meets(ic, ic+1)
∧ ∀e ∈ c, . . . , n : ≤ (arg, arge)

∧ (InOrEquals(
n

∑
c=1

(ic), i)) "

Definition 5.10 (C_HOLDS for the Right-open Interval Codomain I') :
Let pred(re f , arg) ∈ P and let arg, arg1, . . . , argn ∈ SYM where SYM denotes a set
of equivalence classes for which the total ordering relation ≤ is defined. Let further
i1, . . . , in ∈ I‖ and i, in+1 ∈ I'. Let Vn

c=1(FACT(. . .)) denote a conjunction of atomic
facts f ∈ F′. Then, the Containment Holds relation is defined as:

∀i ∈ I' : C_HOLDS(pred(re f , arg), i)⇐

( ∃ (
n̂

c=1
(FACT(pred(re f , argc), ic)) . c, n ∈ N, ic ∈ I‖)

∧ (FACT(pred(re f , argn+1), in+1) . in+1 ∈ I') :
∀c ≤ n : Meets(ic, ic+1)
∧ ∀e ∈ c, . . . , n + 1 : ≤ (arg, arge)

∧ (Older(
n+1

∑
c=1

(ic), i)∨ HeadToHeadWith(
n+1

∑
c=1

(ic), i)) )

∨ ( ∃ FACT(pred(re f , arg1), j) . j ∈ I' :
≤ (arg, arg1)
∧ (Older( j, i)∨ HeadToHeadWith(i, j)) ) "

14 Naturally, in order to successfully perform a self assist the distance eventually needs to fall short of
close for kick/reception.
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C_HOLDS is applicable only in the context of a subset of possible qualitative predicates
as a total order relation (≤) needs to be defined over the set of equivalence classes
Cpred that forms the codomain of possible values for the predicate. ≤ is a reflexive,
antisymmetric and transitive relation and it must hold that ∀c1, c2 ∈C′pred; . c1 ≤ c2 ∨ c2 ≤
c1. Among those sets of equivalence classes that posses a suitable order relation are
qualitative distances (viz. touch≤ very_close≤ close≤ medium≤ f ar) or velocities (viz.
rest ≤ very_slow ≤ . . . ≤ very_ f ast ≤ beam). On the contrary, qualitative predicates
whose set of equivalence classes features a cyclic character such as motion directions
cannot be used with the C_HOLDS predicate.

5.1.6 Focused Qualitative Abstraction

The previous sections outlined the process of qualitative abstraction of dynamic scenes
with respect to the RoboCup 3D Soccer Simulation without particular care for the large
amount of facts that is created by and by given all possible uni- and especially bivalent
relations introduced in section 5.1.1. Let n denote the number of univalent relations and
m the number of bivalent relations. There are 23 movable objects actively participat-
ing in the game which are completely visible in each qualitative abstraction pass under
the assumption of input data derived from perfect vision as featured by a coach agent
observing a game in the RoboCup 3D Soccer Simulation league. What is more, due to
particle filter-based motion estimation and efficient look-around [LRS+06, pp.22 & p33],
it is possible for player agents such as those of the Virtual Werder team to maintain a
less accurate but nevertheless nearly equally complete perception of the dynamic soccer
scenes to be turned into a concise qualitative representation. Thus, for the worst case
numrels = n · 23 + m · 22 · 23 qualitative relations exists which need to be tracked by the
analysis system.

Experimental results presented by Gehrke [Geh05, pp.133] where the performance of a
qualitative abstraction for traffic scenes with variable number of scene actors was evalu-
ated, suggest, that a limitation of the actors considered in each qualitative abstraction
pass is compulsory for efficient operation. Reetz-Schmidt notes in the description of the
REPLAI-II plan recognition system (cf. section 4.1.3 and [Ret91]) that ”the observer has
to concentrate on those agents he regards as interesting. A spectator of a soccer game
would not try to observe all 22 players with equal attention, but would concentrate on
interesting happenings on the field.” [Ret91, p.177].

With regard to the pool of motion patterns that is developed for this thesis in section 5.3,
a comparatively simple focusing heuristic can be employed. As the events and actions
are ball-centered in character, a solution suggests itself where the ball is understood as
single key object whose respective location on the field defines a dynamic region on the
field which is considered as being immediatly interesting for the momentary course of the
game. The region is defined by a certain radius (viz. 13m) around the ball. In order
to mitigate the already somewhat familiar oscillation problematic which may occur when
players are located in close proximity to the boundary of the relevance region, again a
two-sided boundary with suitable flexibility (viz. 1m) can be implemented seizing once
again the ideas by Steinbauer et al. described in section 5.1.3. Univalent relations are
compiled for all objects within the relevance region, as should be expected. Bivalent
relations are constrained further to those subset of relations from the ball as key ob-
ject to the non-key objects in the relevance regions. Thus, as an example the relation
sorientation(ball,pl1,north) is calculated contrary to both sorientation(pl1,ball, south) or
in particular sorientation(pl1,pl2,northWest) for any two non-key objects in the relevance
region. The feasibility of such a restrictive constraint on the relations compiled in each
qualitative abstraction pass was substantiated empirically in preliminary experiments as
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the detection quality of motion incidences for the patterns specified in section 5.3 is not
decreased.

It must be noted however that this is due to the ball focus of specified patterns and
less constraining heuristics would without doubt be required once additional patterns
are compiled which evaluate for example (1) the potential menaces of players about to
handle/kick the ball by approaching aggressors from the enemy team or (2) the coverage
of players – supposedly in particular the player performing the spatio-temporal analysis in
order to gain a better understanding of its current situation – by other players from the
adversary team. Scenario 1 could be accommodated for with the possibility of temporary
extension of the set of key objects as players are added to this set which are in control of
the ball and thus susceptible to aggressive behavior by other players. Scenario 2 could be
accommodated for with the establishment of further persistent key objects that each define
their particular relevance region. In applying those extensions the focus strategy would
evolve such that it converges with the focus strategies employed by human spectators
while watching soccer games.

Thus the simple focus heuristic, employed for this thesis should be regarded as a first,
coarse approximation which offers possibilities for later, gradual refinement which remains
oriented at the pool of target motion patterns to be detected.

5.2 Formalisms for the Representation of Extensive Motion Sit-
uations

The previous section was concerned with the incremental compilation of the fundamen-
tal tier of a qualitative knowledge base comprised of spatial zero-, mono- and bivalent
relational facts associated with their respective temporal extension (F′). However, the
pieces of knowledge compiled so far can hardly be considered relevant in their own right
with regard to the requirements stipulated in section 3.4: to populate the knowledge base
with extensive, domain-specific motion instances in terms of events, actions and action
sequences. In fact, atomic qualitative building blocks have been provided.

Consequently, this section attends to the question, in which way motion situations in
a dynamic soccer scene can be modeled formally by means of motion patterns. Each
of those patterns comprises a blueprint, or common denominator, for a certain class of
motion instances. Once those patterns that explicitly encode domain expertise due to
their being manually crafted by a knowledge engineer, are available, the task to analyze
a dynamic scene is reduced, for the scope of this thesis, to efficient detection of concrete
motion instances by hierarchical matching of spatio-temporal patterns.

The formal specification of motion patterns for deployment in the scene analysis presup-
poses a well-founded understanding of the formal description of the desired target pattern
types. In section 5.1.5 fundamental aspects of Allen’s interval temporal logic have been
studied that were necessary for the representation of simple properties15. Beyond that,
Allen introduces occurrences as objects in his temporal logic and subdivides this class
into two subclasses, processes and events which are distinguished from properties by ”the
characteristics of the set of temporal intervals that they hold and occur over” [All84,
p.131].

5.2.1 Representation of Events

According to Allen, temporal facts that are expressed with the HOLDS-relation, exhibit the
property of homogeneity as a distinguishing feature which unambiguously sets them apart
15 using the HOLDS- and – for the scope of this thesis – the derived FACT-relation
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from events. While the HOLDS-relation is closed under the In-relation, events adhere
to the converse semantics. As Allen puts it: ”[...] an event occurs over the smallest
time possible for it to occur.” [All84, p.131]. In Allen’s logic, events are consequently
represented by a new predicate, namely OCCUR, that is defined in terms of its anti-
homogeneity property as follows:

Definition 5.11 (Homogeneity Property of the OCCUR Relation) :
Let OCCUR(event, i) denote the incidence of a specific event over the interval i ∈ I‖ and
let further j ∈ I‖, then the homogeneity property the event incidence is defined as:
OCCUR(event, i)∧ In( j, i) . i, j ∈ Iparallel ⇒∼ Occur(event, j) "

Event classes (summarized in the set E) can be defined as a first-order logic term
such as kick(shooter, . . .)16 and thus resemble in their layout the facts produced in the
qualitative abstraction. A concrete event incidence in a soccer game is expressed as
OCCUR(kick(pl1, . . .), i) ∈ E′ . i ∈ I‖ where E′ is the set of momentarily hitherto detected,
concrete event incidences.

Each equivalence class of events can be described in terms of their particular neces-
sary incidence conditions Pevent(t, e) . t ∈ I‖, e ∈ E such that OCCUR(e, t)⇒ Pevent(t, e).
Furthermore, if Pevent(t, e) are both necessary and sufficient conditions for an event’s oc-
currence, as it is the case in the application scenario considered for this thesis, the event
pattern can be defined as follows:

Definition 5.12 (Event Pattern) Let e ∈ E denote an equivalence class of events and let
i, j ∈ I‖. Then, the event pattern associated with e is defined as:
OCCUR(e, i)⇔ Pevent(i, e)∧ (∀ j . In(i, j) ⊃ ¬Pevent( j, e)) "

The complicated specification is necessary in order to comply with definition 5.11. The
term Pevent(i, e) is defined as a formula in first-order logic. The codomain of allowed
constituent terms can be specified as follows:

dom(Pevent(i, e)) = Fassert ∪ Fin f er ∪E∪TRAllen ∪TRFreksa ∪ SR∪META.

Thus, for the compilation of event patterns, valid building blocks are asserted qualitative
facts (→ FACT(. . . , i) ∈ Fassert), inferred facts (→ {C_}HOLDS(. . . , j) ∈ Fin f er) and
other events (→ OCCUR(. . . , k) ∈ E). In order to specify the temporal entanglement
of the aforementioned constituents, the interval relations by Allen (TRAllen) and Freksa
(TRFreksa) come in handy. An additional set of relations (SR) can be used to enforce
spatial constraints where required.

The META set contains two meta-logical functions which are adopted from the Prolog
world, namely seto f (. . .) [Bra01, pp.182] and not f (. . .) [Bra01, pp.125]. Even though
these functions tend to add impurities to the formalization, they provide both convenience
and an extended expressiveness for the specification of event patterns that justify their
inclusion into dom(Pevent(i, e)).

Excursus: Meta-Logical Functions (META) :
First, the seto f (. . .) function acts as a kind of object collector. Consider the example:

seto f (player, team_member(player,SVWerderBremen), squad). The seto f (. . .) function
accumulates all players that are known to be under contract with the SV Werder Bremen
into a complete squad list17.
16 The ellipsis ’. . .’ can be neglected for the time being. Its meaning is described in section 5.2.3, pp.88
17 Contemplate pattern 5.3 on page 92 in section 5.3.1 for a concrete application of seto f (. . .)
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Second, the not f (. . .) function has the semantics of negation as failure18. Consider
the example not f (superior(Diego,Ribéry)). This term holds once it is not explicitly
known that Diego is superior to Ribéry. Thus, even if no statement is made in either
direction as to the superiority of the aforementioned Bundesliga soccer players, the term
not f (superior(Diego,Ribéry)) is still true as the term superior(Diego,Ribéry) does not
hold. Formally, not f (. . .) is based on the closed world assumption [RN95, p.354–357].
According to this assumption, the world is closed in the sense that everything that holds
true is stated explicitly in the knowledge base or can be derived thereof. This special se-
mantics needs to be taken into account in the application of not f (. . .) in the compilation
of concrete event/action patterns19. •

Turning the focus of attention back to the compilation of Pevent(i, e), the terms t ∈
dom(Pevent(i, e)) are turned into a valid formula of first-order logic using the common
logical connectives (viz. ∧,∨,¬). The composition of Pevent(i, e) is flexible as it allows to
use subordinate event classes in the specification of superordinate event patterns.

As this thesis is concerned with the detection of event incidences via pattern matching
of the respective Pevent(t, e), a simplified notation for event patterns is applied which
conforms to OCCUR(e, i)⇐ Pevent(i, e) (cf. section 5.3 on page 89 for example patterns).
Thus, the notation of the event pattern contributes to a clarification of the pattern usage.
As for the correctness of the notation, it should be noted, that Allen himself does likewise
in [All84].

5.2.2 Representation of Actions and Action Sequences

Turning focus of attention from events towards actions, it is worthwhile, initially, to make
a note of the fact that, in Allen’s interpretation, events describe an activity which involves
a certain product or outcome such as ”The ball has been kicked”. Processes, on the other
hand, refer to the proceeding of an activity and do not necessarily involve a culmination
or desired result such as ”The player is running”.

From a formal point of view, processes differ from events in their homogeneity property
in that definition 5.11 does not hold. In contrast, if a process is occurring over an interval i,
it must also be occurring over at least a single subinterval j ⊆ i. Processes are represented
by another predicate in Allen’s logic, namely OCCURRING, which is formally defined as
follows:

Definition 5.13 (Homogeneity Property of the OCCURRING Relation) :
Let OCCURRING(process, i) denote the incidence of a specific process/action over the
interval iI‖ and let further j ∈ I‖, then the homogeneity property of the process/action
incidence is defined as:
OCCURRING(process, i)⇒ ∃i . In( j, i)∧OCCURRING(process, j) "

It is worthwhile to contemplate the meaning of this definition with regard to the de-
ployment of the OCCURRING-predicate for the specification of actions from the domain
of simulated soccer. The latter has been proposed by Miene in [Mie04a, p.36 & pp.102]
where processes are put on a level with actions, bearing to Allen as follows: ”[...] an
action refers to something that a person or a robot might do. It is a way of classifying the
different sorts of things that an agent can do to affect the world, thus it more resembles
a sensory-motor program than an event. By performing an action, an agent causes an
event to occur, which in turn may cause other desired events to also occur.[...] Some
theories refer to the event that was caused as the action, but this is not what we intend
18 This is why the ’f’ for failure occurs as an index character in the function name.
19 Contemplate pattern 5.5 on page 93 in section 5.3.1 for a concrete application of not f (. . .)
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here. Rather, we will draw on an analogy with the robot situation, and view actions as
programs.” [AF94, p.4].

It becomes apparent that Allen and Miene consistently understand actions as kind
of processes, stressing the significance of the respective course character. In [AF94]
however, Allen seems to be concerned primarily with such agent actions that are performed
over the course of time intervals while a dedicated program is active on a single agent
such as walking to a position on the soccer pitch. For this class of continuous actions,
definition 5.13 appears to be feasible20. Miene, on the other hand, also considers actions
that, although initialized by a single agent, require active participation of supporting
agents. Examples comprise amongst others the pass and fail_pass actions. It is difficult
to attribute a process character to such actions both from a common-sense- and from a
formal-logical point with single-agent program in mind. Under such circumstances, if a
pass action is specified using Allen’s formalism (such as OCCURRING(pass(pl1,pl4), i)),
it is immediatly obvious that definition 5.13 does not hold, since for each conceivable
subinterval j ⊂ i, the pass action is not embraced completely. What is more, the pass
initiator is involved in only a very short part of the whole pass course. Thus, in order to
comply with definition 5.13, it is imperative to think of passes as – potentially unintended21

– multi-agent programs and the constraint imposed by definition 5.13 referring to these
programs.

The considerations made so far were aimed at a thorough comprehension of the process
characteristic of actions in general and in the RoboCup 3D Soccer Simulation League in
particular. With respect to the analysis of dynamic scenes, and the detection of action
incidences, it is sufficient to adopt the policy to treat actions as a sub-class of events.
Actions, brought about by single/multi-agent programs, cause the occurrence of associ-
ated action events (e.g. the pass program causes the action event that the ball has been
passed from pl1 to pl2 with the latter now controlling the ball as a result; cf. [AF94] as
quoted above). Consequently, these events are subject of detection.

Thus, in correspondence with the event case, action classes (summarized in the set
Aseq) can be defined as first-order logic term such as pass(shooter, receiver, . . .) ∈ Aseq

22.
A concrete action incidence in a soccer game is expressed as
OCCURRING(pass(pl1,pl2, . . .), i) ∈ A′ . i ∈ I‖ where A′ is the set of concrete action
instances.

In accordance with the event case, action classes are described in terms of their respec-
tive necessary and sufficient incidence conditions Pact(i, a) . ∈ I‖, a ∈ Aseq.

Definition 5.14 (Action Pattern for a ∈ Aseq) Let a ∈ Aseq denote an equivalence class
of actions and let i, j ∈ I‖. Then, the action pattern associated with a is defined as:
OCCURRING(a, i)⇔ Pact(i, a)∧ (∀ j . In(i, j) ⊃ ¬Pact( j, a)) "

This definition differs from its counterpart for events only in the codomain of allowed
terms to be found in Pact(i, a). It can be specified as follows:

dom(Pact(i, a)) = Fassert ∪ Fin f er ∪E∪A∪TRAllen ∪TRFreksa ∪ SR∪META

Thus, the codomain for Pact(i, a) in a natural way comprises all building blocks that
can be found already in Pevent(i, e) such that simple actions can be described in terms of
constituent events (e.g. kick- and reception-events for the pass-action) as well as facts.
20 even though it is obviously appropriate only in continuous time domains due to the demand for

continued existence of shorter sub-intervals for which the process, or the action program, still holds/is
active

21 in case of fail passes due to the fact that agents from competing teams do not perform cooperative
actions willingly

22 The ellipsis . . . can be neglected for the time being. Its meaning is described in section 5.2.3, pp.88
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(a) Onetwo-pass as an example for a type 1 action
sequence with simple, sequential incidence course.

(b) Dribbling as an example for a type 2 action se-
quence as composition of single atomic dribblings.

However, Pact(a, i) may also contain subordinate action classes, allowing for the following
two scenarios: First, the specialization of basic actions (e.g. the pass specializes a ball
transfer) and, second, the specification of action sequences with a sequential course of
incidence. The onetwo-pass, conceived as concatenation of two consecutive passes back
and forth between two players of the same team, is a well-suited example for such an
action sequence (cf. figure 5.12a).

Using the aforementioned codomain for Pact(i, a) accommodates the demand to spec-
ify actions of varying complexity in a concise and scalable manner. Seizing ideas from
Miene [Mie04a, chapter 4], the natural hierarchical structure of the actions to be recog-
nized is exploited. The more complex the action patterns, the more complex constituents
may contribute to Pact(i, a). Yet, at the same time, the incorporation of less complex con-
stituents down to simple facts remains a valid option, whenever such a course of action
is beneficial for a precise specification.

So far, only the first of two potential flavors of action sequences, those that feature a
simple sequential course of incidence (type 1 → a ∈ Aseq) have been covered. A closer
examination of the space of conceivable action sequences to be found in the soccer domain,
however, unveils the existence of action sequences comprised of a homogeneous, finite,
yet in its length a priori indeterminate concatenation of a particular basic action (type
2 → a ∈ Aloop). The dribbling is a paradigmatic example for the latter type of action
sequences due to the fact that complete dribble sequences are composed of simple atomic
dribblings where an agent forwards the ball only once (cf. figure 5.12b).

Let OCCURRING(a, i) . class(a) ∈ Aloop, i ∈ I‖ denote a concrete incidence of a type 2
action sequence. Then, sub-intervals j . In(i, j) may exist, such that OCCURRING(a, j).
This means, a longer action sequence may embrace shorter, yet congenial sub-sequences.
In order to handle the specification type 2 action sequences, not covered so far by definition
5.14, an alternate definition is required which both reflects and exploits the compositional
characteristics of a ∈ Aloop as follows:

Definition 5.15 (Action Pattern for a ∈ Aloop) Let a ∈ Aloop and asupp ∈ A≡ Aseq ∪Aloop.
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Let further i, j, k ∈ I‖. Then, the action pattern associated with a is defined as:

OCCURRING(a, i)⇔

(OCCURRING(asupp), i)
∨ ( OCCURRING(a, j)∧OCCURRING(asupp, k))

∧Meets( j, k)∧ Equals(i, j + k)∧ Pcont.(a, asupp) ) "

This definition is to convey that self-similar action sequences can be both purely sequen-
tial, in which case they correspond immediatly with their respective constituent support
action (e.g. atomic dribbling), or the concatenation of an existing sequence with a further
support action. In the latter case, it is also possible to enforce certain spatial continuity
constraints for the concatenated sequence by means of
Pcont.(a, asupport, i), a conjunction of conditions to be met by both a and asupport with
dom(Pcont.(a, asupport, i)) = SR.

To conclude, relying on both definition 5.14 and definition 5.15, it is now possible to
detect simple actions as well as both types of actions sequences. The resulting set of
detectable action classes is now A = Aseq ∪Aloop.

Concluding this subsection so far, both events and actions have been formally introduced
including representational means in Allen’s temporal logic with adjustments with respect
to the application domain, their particular temporal semantics and the composition of
their associated motion patterns.

5.2.3 Enhanced Representation via Exploitation of Incidence Context

However, the specification of both, the event- and action classes, is only partially com-
plete. Revisiting the examples introduced so far – i.e. kick(shooter, . . .) ∈ E for events,
pass(shooter, receiver, . . .) ∈ A for actions – both contain ’. . .’ as a placeholder. While an
explanation will follow as to the actual content substituted by ’. . .’, it is worthwhile to
appraise the composition of event/action classes so far:

Example → pass action : pass
︸︷︷︸
UID

(

characterization︷ ︸︸ ︷
shooter, receiver︸ ︷︷ ︸

reference
, . . .︸︷︷︸
diversification

)

Fundamental for each concept class c ∈ E∪A is its unique identifier (UID). It already
categorizes the event/action broadly, thereby setting it apart unambiguously from the re-
maining classes, available in E∪A. Each class term may optionally comprise an argument
tuple of fixed arity which is instrumental in the characterization of event/action incidences.
The argument tuple is subdivided in two sections, denoted as reference and diversification.
The reference sub-tuple accommodates for the fact that, for a well-founded understanding
of motion situations in a dynamic scene, it is – generally speaking – of considerable signif-
icance, being able to associate the incidence of any particular motion situation with the
involved scene actors. Taking up the pass example, the reference-tuple 〈shooter, receiver〉
specifies the player agents which are involved in the ball transfer.

Amongst the distinct approaches to spatio-temporal analysis of dynamic scenes that
have been reviewed in chapter 4, several, such as Kaminka and colleagues (cf. sec-
tion 4.1.5) or Beetz et al. (cf. section 4.1.8) exist that are satisfied constraining their
respective detection granularity to unique identifier and reference alone. With respect to



in the RoboCup 3D Soccer Simulation League 89

the superordinate application context of the employed analysis approaches, such a restric-
tion can be appropriate if it is sufficient to learn (1) which motion situations occurred and
(2) which actors were involved therein.

Going one step further in order to obtain a comprehensive characterization for motion
situations, however, in agreement with Wendler et al. (cf. section 4.1.2, [Wen03]) it is
seen as desirable to bring about an extended diversification of those situations, such
that characteristic traits are specified as arguments in the class term, summarized in the
second characterization sub-tuple (diversification). The explanatory power of detected
motion instances is increased. It is now possible to tell not only that a particular motion
situation occurred but also the particular characteristic with which it occurred.

Coming back to the initial pass example, the primal description of the pass class could
now be extended as follows:

pass(

re f
︷ ︸︸ ︷
shooter, receiver) ←→ pass(

re f
︷ ︸︸ ︷
shooter, receiver,

div︷ ︸︸ ︷
dir, height, f orce, success)

Now a concrete pass incidence could be characterized as forward-directed pass, played
high and with considerable force which was completed successfully.

In [Mie04a, p.103], Miene tries to emulate the diversification approach with respect
to the success of an action incidence, introducing distinct patterns for successful and
failed passes. Yet, seizing the ideas presented by Wendler et al. seems more natural in
comparison, representing the success of a pass as a specific character trait of a single
action class.

Once the placeholder ’. . .’ used in the previous subsections is replaced with a concrete tu-
ple of diversification arguments, thus extending the primal class signature, it is required to
extend Pevent(c, i) or Pact(c, i) respectively. This is done via appending further constituents
from the codomain dom(Pevent|act(c, i)) to the existing spatio-temporal patterns.

This modification on the specification comes along with an adopted view upon the task
of the analysis of dynamic scenes as it is used in this thesis. As it was the case before, the
primary task is still made up of a structured data-driven, i.e. bottom-up detection of the
incidence of motion patterns in an unfolding dynamic scene. However, each successful
detection of a new motion situation is now followed up with an non-stopping appraisal
of the particular incidence context which is provided by the rich pool of facts that is
compiled and maintained as result of the qualitative abstraction. Those facts could be
treated solely as fuel for the pattern matching process in order to detect primal motion
patterns. However doing so would barely exploit the full potential of the qualitative
abstraction. Thus, for the scope of this thesis, the readily available pool of qualitative
facts is understood as a valuable description of the situational context on the soccer pitch
whose evaluation is mandatory for an efficient compilation of a rich, qualitative world
model. The latter, supplemental analysis task is qualified as non-stopping as due to its
implementation, the detection of motion situation is solely sophisticated but never revised.

5.3 Specification of Motion Patterns for the RoboCup 3D Soc-
cer Simulation

Consequently, based on the formalisms that have been worked out in the previous section
the concrete pool of motion patterns that will be subject to detection in concrete games
of the RoboCup 3D Soccer Simulation League by the analysis developed in this thesis, is
developed.

http://www.robocup.org
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Figure 5.12: Two possible kick scenarios: The situation on the left can be disambiguated
by the exclusive kick pattern as only agent 6 is opposite of the ball’s motion direction
dirmot after the kick. The situation on the left cannot be disambiguated properly as both
players are located opposite of the direction of movement due to the relaxed interpretation
of Opposite_O f (dirmot, dirb2p).

5.3.1 Specification of Event Patterns

In the first instance, the specification of event patterns is considered in the following
ranging from several kick types, over ball reception and deflection to events that center
around struggling for ball control and the retreat from the ball. In the compilation of
the event patterns, special attention is put on the exploitation of the respective incidence
context of events in order to obtain a comprehensive pattern diversification.

Kicking the Ball

A central concept in simulated as well as human soccer is the kick of the ball that initiates
a ball transfer. In the RoboCup 3D Soccer Simulation League three distinct kick scenarios
can be identified which need to be handled adequately.

By far the most common kick is the standard kick which is to be unambiguously executed
by a single player on the soccer pitch. This kick flavor corresponds to the kick which is
commonly discussed in related work [Mie04a, p.97]. However, the event pattern for the
standard kick which is compiled for this thesis as shown in motion pattern (5.1), p.91
entails a necessary means for a plausible disambiguation in kick situations where more
than a single player is in ball control. A standard kick can only be attributed to a
player if the motion direction dirmot of the ball right after the kick is opposite of the
direction from ball to player db2p at the beginning of the kick. In the kick pattern, the
Opposite_o f (dirb2p, dirmot)-relation holds if either dirmot is directly opposite of dirb2p in
the wind rose or an immediate neighbor of the direction class that lies directly opposite
of dirmot (cf. figure 5.12). Thus, in situations where two players have approached the ball
from coarsely opposing sides right before the kick incidence (cf. figure 5.12, scenario 1 on
the left), a robust association with the correct kick candidate can be achieved.

Both the motion direction and the inclination behavior of the departing ball are evaluated
as pieces of the incidence context and contribute to the threefold diversification for the
kick pattern.

A second kick pattern is required due to the limited temporal resolution of world model
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Motion Pattern 5.1 Event pattern for the standard kick by a single player

OCCUR(kick(

re f
︷ ︸︸ ︷
shooter,

div︷ ︸︸ ︷
dirglob:8, height, std︸︷︷︸

type

), 〈s, e〉)⇐

FACT( f ree_ball, 〈e, inf〉)
∧ FACT(acceleration(ball, increasing), 〈s, e1〉)
∧ DurationAtMax(〈s, e〉,40)
∧ FACT(distance(ball, shooter, touch), 〈s2, e2〉)
∧ (Meets(〈s2, e2〉, 〈s, e〉)∨Contemporary_O f (〈s2, e2〉, 〈s, e〉))
∧ HOLDS(motion_Dir(ball, dirglob:8), 〈e, e + 1〉)
∧ HOLDS(sorientation(ball, shooter, dir2), 〈s, s + 1〉)
∧ Opposite_O f (dir, dir2)
∧ HOLDS(zposition_trend(ball, trend), 〈e, e + 1〉)
∧ Translate

(height
ztrend(trend, height)

Motion Pattern 5.2 Event pattern for the volley kick by a single player

OCCUR(kick(

re f
︷ ︸︸ ︷
shooter,

div︷ ︸︸ ︷
dirglob:8, height, volley︸ ︷︷ ︸

type

), 〈s, e〉)⇐

FACT(acceleration(ball, increasing), 〈s, inf〉)
∧ FACT( f ree_ball(), 〈s1, inf〉)
∧ Older(〈s1, inf〉, 〈s, inf〉)
∧ FACT(motion_dir(ball, dirglob:8), 〈s, inf〉)
∧ FACT(motion_dir(ball, dirglob:8

2 ), 〈s2, e2〉)
∧ Meets(〈s2, e2〉, 〈s, inf〉)
∧ ( dirglob:8 7= dirglob:8

2 )
∧ FACT(distance(ball, shooter, very_close), 〈s3, e3〉)
∧ TailToTailWith(〈s2, e2〉, 〈s3, e3〉)
∧ HOLDS(zposition_trend(ball, trend), 〈s, e〉)
∧ Translate

(height
ztrend(trend, height)

updates for both the agents playing on the soccer pitch and the online coach. As it turns
out, it is possible for agents to kick the ball in between two consecutive updates such that
it is never perceived that the agent comes into contact with the ball in which case the
event pattern for the standard kick does not hold. Those kick incidences constitute the
simulation equivalent to volley kicks in real soccer where the ball is forwarded immediatly
by a certain player without time spent for ball control or orientation. The dedicated kick
pattern for the volley kick is shown in motion pattern (5.2), p.91.
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Motion Pattern 5.3 Disambiguation Event Pattern for a collective kick by a player group

OCCUR(kick(

re f
︷ ︸︸ ︷
players,

div︷ ︸︸ ︷
dirglob:8, height, co), 〈s, e〉)⇐

seto f (player, OCCUR(kick(player, dirglob:8, height, std), 〈s, e〉), players)

Motion Pattern 5.4 Event Pattern for ball reception by a single player.

OCCUR(receive(

re f
︷ ︸︸ ︷
player), 〈s, s + 1〉)⇐

FACT(x_ball_control(player), 〈s, inf〉)
∧ C_HOLDS(velocity(ball,medium), 〈s− 1, s〉)
∧ FACT( f ree_ball(), 〈s2, e2〉)
∧ Meets(〈s2, e2〉, 〈s, s + 1〉)

It should be noted that both kick patterns introduced so far contribute to the complete
specification of the kick scenario in the RoboCup 3D Soccer Simulation League. Both
constitute distinct characteristics of the same embracing basis concept. In the pattern
specifications (pattern 5.1 on the previous page and pattern 5.2 on the preceding page)
this is conveyed by the fixation of the type argument in the pattern diversification to a
constant value (standard or volley respectively).

In section 3.4.2, a sound disambiguation for kick incidences was required which has been
partially realized through the specification of the pattern for the standard kick. However, it
is still possible for a particular type of ambiguous kick situation to occur which is depicted
in scenario 2 on the right of figure 5.12 on page 90. In these situations two competing
players are both located side-by-side such that it is hard or even impossible for a human
to decide which of the players is involved in the resulting kick incidence. As a solution to
this problem the statement made by the recognition system is relaxed such that a weaker,
but still secure claim is made that the ball was shot by a group of competing agents.
With respect to the otherwise categorical character of qualitative knowledge compiled
and maintained in this thesis, this approach appears to be sound in comparison to an
alternative approach proposed by Miene, where kick probabilities are introduced [Mie04a,
pp.97]. Whenever in that approach more than one agent presumably kicks the ball at
the same time, the probabilities for each kick candidate are equally distributed. This
constitutes a transition from the recognition of the actual situation to assumptions about
the course of events. The disambiguation pattern for the collective kick which is used in
this thesis is shown in pattern 5.3. It is more a helper- than a fully grown pattern in its
own right.

Ball Reception and Deflection

Now the distinguishable kick scenarios have been specified, the focus of attention is turned
to the reception of the ball. In comparison, the dedicated reception pattern specified in
motion pattern (5.4), p.92 is rather simple and does not provide a diversification. A ball
is received unambiguously once a player gains exclusive control over a sufficiently slow
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Motion Pattern 5.5 Event Pattern for Ball deflection by a single player.

OCCUR(de f lect(

re f
︷ ︸︸ ︷
player), 〈s, e〉)⇐

FACT( f ree_ball, 〈e, inf〉)
∧ FACT(x_ball_control(player), 〈s, e〉)
∧ DurationAtMax(〈s, e〉,40)
∧ FACT( f ree_ball, 〈s1, s〉)
∧ HOLDS(motion_dir(ball, dirglob:8

1 ), 〈s− 1, s〉)
∧ HOLDS(motion_dir(ball, dirglob:8

2 ), 〈e, e + 1〉)
∧ ( dirglob:8

1 7= dirglob:8
2 )

∧ not f (OCCUR(kick(player,_,_,_), 〈s2, e〉))

Motion Pattern 5.6 Pattern for fight engagement, first variant.

OCCUR(engage_ f ight(
re f

︷ ︸︸ ︷
aggressor,

div︷︸︸︷new), 〈s, s + 1〉)⇐

FACT(distance(ball, aggressor, touch), 〈s, inf〉)
∧ FACT( f ight_ f or_ball(), 〈s, inf〉)
∧ FACT(x_ball_control(player), 〈s2, e2〉)
∧ Meets(〈s2, e2〉, 〈s, s + 1〉)

ball that was formerly free. The scenario where multiple players ’receive’ the ball at the
same time is covered by a dedicated event, namely the start_fight event, discussed below.
With respect to the specification of the reception pattern it is worthwhile to note that
containment holds is used to express that upon reception the ball should be medium or
have a qualitative velocity that is entailed by slow such as very slow or resting.

Besides the normal reception of the ball, situations occur where the ball collides with
a player and bounces off in a new direction as a result without the player issuing a kick.
These deflections are described with the event pattern specified in motion pattern (5.5),
p.93. The statement of the case, that the ball has provably not been kicked by the
deflecting player during is expressed in the last line of the specification. This line states:
Nothing is known about the player kicking the ball. The wildcards (’_’) in the kick mean
that it is of no interest, how the ball might have been kicked.

Struggle for Ball Control

In the following, two basic event patterns are treated which center around the fight for
the ball. The first pattern thereof is the fight engagement which comes in two variants.
First, a fight engagement occurs when an engaging adversary player comes in contact
with the ball which was formerly controlled exclusively by another player. This pattern is
specified in motion pattern (5.6), p.93.

A player can also engage in a fight for the ball as an additional competitor for exclusive
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Motion Pattern 5.7 Pattern for fight engagement, second variant.

OCCUR(engage_ f ight(
re f

︷ ︸︸ ︷
aggressor,

div︷ ︸︸ ︷
existing), 〈s, s + 1〉)⇐

FACT(distance(ball, aggressor, touch), 〈s, inf〉)
∧ FACT( f ight_ f or_ball(), 〈s2, inf〉)
∧ Older(〈s2, inf〉, 〈s, inf〉)

Motion Pattern 5.8 Event Pattern for the synchronous start of a fight, where multiple
players reach the ball at the same time.

OCCUR(start_ f ight(

re f
︷ ︸︸ ︷
players), 〈s, s + 1〉)⇐

FACT( f ight_ f or_ball(), 〈s, inf〉)
∧ FACT( f ree_ball(), 〈s2, e2〉)
∧ Meets(〈s2, e2〉, 〈s, inf〉)
∧ seto f (player, FACT(distance(ball, player, touch), 〈s, inf〉), players)

control of the ball. That is, a player engages in an already ongoing fight. The associated
pattern is specified in motion pattern (5.7), p.94.

The other basic event pattern which centers around the struggle for ball control com-
prises situations where multiple players reach a previously free ball right a the same time
leading to an immediate fight between the involved players. The start fight pattern spec-
ified in motion pattern (5.8), p.94 complements the controlled reception of the ball by a
single player.

The recent event patterns were concerned with the emergence and evolutions of situation
where multiple agents struggle for control of the ball. The retreat pattern, on the contrary,
is concerned with the withdrawal of players from the ball. Two distinguishable scenarios
of retreat exist. In the first scenario a player that exerts exclusive ball control withdraws
from the ball without a shot. Such a behavior could be part of a strategy to leave the ball
to be handled by a teammate which might be better suited to kick. The corresponding
pattern is specified in pattern 5.9.

The second retreat scenario is associated with a fight for the ball. Sometimes, players
retreat from a fight thereby leaving it to the remaining contestants to continue the struggle
or ending the fight completely in favor of a single other agent which then exerts exclusive
ball control. The retreat pattern associated with this scenario is specified in motion
pattern (5.10), p.95.

Both retreat patterns introduced so far contribute to the complete specification of
the retreat scenario. Analogous to the situation with the kick, both constitute distinct
characteristics of the same embracing concept. Therefore, in the aforementioned pattern
specifications the type argument is fixed in the pattern diversification to a constant value
(ball or fight respectively).

The consideration of a player’s withdrawal from the ball concludes the presentation of
event patterns that have been worked out concretely in the scope of this thesis. The
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Motion Pattern 5.9 Event pattern for a retreat from the ball such that the ball is free as
a consequence.

OCCUR(retreat(

re f
︷ ︸︸ ︷
player,

div︷︸︸︷
ball︸︷︷︸
type

), 〈s, s + 1〉)⇐

FACT(distance(ball, player, very_close), 〈s, inf〉)
∧ FACT(distance(ball, player, touch), 〈s1, e1〉)
∧ Meets(〈s1, e1〉, 〈s, s + 1〉)
∧ FACT(x_ball_control(player), 〈s2, e1〉)
∧ FACT( f ree_ball(), 〈s, inf〉)
∧ not f (OCCUR(kick(_,_,_,_), 〈s3, e3〉))∧Meets(〈s3, e3〉, 〈s, s + 1〉)
∧ not f (OCCUR(de f lect(player), 〈s4, e4〉))∧Meets(〈s4, e4〉, 〈s, s + 1〉)

Motion Pattern 5.10 Event pattern for a retreat from a fight such that at least a single
other agent remains in ball control.

OCCUR(retreat(

re f
︷ ︸︸ ︷
player,

div︷︸︸︷
fight︸︷︷︸
type

), 〈s, s + 1〉)⇐

FACT(distance(ball, player, very_close), 〈s, inf〉)
∧ FACT(distance(ball, player, touch), 〈s1, e1〉)
∧ Meets(〈s1, e1〉, 〈s, s + 1〉)
∧ ( ( FACT( f ight_ f or_ball(), 〈s2, inf〉)

∧ Older(〈s2, inf〉, 〈s, s + 1〉) )
∨ ( FACT(x_ball_control(player2), 〈s, inf〉)

∧ FACT( f ight_ f or_ball(), 〈s3, s〉) ) )
∧ not f (OCCUR(kick(_,_,_,_), 〈s3, e3〉))∧Meets(〈s3, e3〉, 〈s, s + 1〉)
∧ not f (OCCUR(de f lect(player), 〈s4, e4〉))∧Meets(〈s3, e3〉, 〈s, s + 1〉)

selection process amongst possible event candidates was guided by two trailing thoughts.
On the one hand, patterns such as kick and reception can be considered mandatory due
to the fact that the largest part of the action patterns specified in the following section
such as passes depend immediatly upon those basic events. On the other hand, patterns
were selected such that a certain alignment with equivalent patterns developed by Miene
for the RoboCup 2D Soccer Simulation in [Mie04a] is feasible.

5.3.2 Specification of Action Patterns

The following section introduces a selection of action patterns that are relevant in the
RoboCup 3D Soccer Simulation League and specifies them based on the formalisms worked
out in section 5.2.2.
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Motion Pattern 5.11 Action pattern for a ball transfer concluded by a normal reception
of the ball by the player acting as transfer target.

OCCURRING(ball_trans f er(

re f
︷ ︸︸ ︷
source, target,

div︷ ︸︸ ︷
dirglob:8, height, f orce), 〈s, e〉)⇐

OCCUR(kick(source, dirglob:8, height, type), 〈s, e1〉)
∧ ( type = std ∨ type = volley )
∧ OCCUR(receive(target), 〈s2, e〉)
∧ Older(〈s, e1〉, 〈s2, e〉)
∧ ( HOLDS( f ree_ball(), 〈s3, e3〉)

∨ ( OCCUR(de f lect(_), 〈s6, e6〉)
∧ During(〈s6, e6〉, 〈s3, e3〉)
∧ HOLDS( f ree_ball(), 〈s3, s6〉)∧ HOLDS( f ree_ball(), 〈e6, e3〉) ) )

∧ Meets(〈s, e1〉, 〈s3, e3〉)∧Meets(〈s3, e3〉, 〈s2, e〉)
∧ Virtually_Playon(〈s, e〉)
∧ FACT(acceleration(ball, increasing), 〈s, e4〉)
∧ HOLDS(velocity(ball, vels), 〈s− 1, s〉)
∧ HOLDS(velocity(ball, vele), 〈e4, e4 + 1〉)
∧ Translate

( f orce:5
accel:6 (vels, vele, f orce)

Ball Transfers

The undoubtedly most important action pattern in human- as well as in simulated soccer is
the ball transfer which constitutes the basis pattern for a number of specialized concepts
as it describes the general kick-induced transfer of the ball over a certain distance of
the field and its subsequent reception or immediate forwarding respectively, either by the
initiator of the transfer itself or another player on the soccer pitch. For this thesis, two ball
transfer patterns are required contrary to related approaches such as [Wen03] due to the
introduction of the volley kick. The latter provokes two distinct ball reception scenarios.
Consequently, the pattern specified in motion pattern (5.11), p.96 refers to the scenario
of a normal reception by the target player while the alternative pattern specified in motion
pattern (5.12), p.97 refers to the scenario of a pseudo-reception via volley kick.

As the basic concept of the ball transfer possesses rather sparse explanatory power, a
threefold diversification is introduced which specifies the respective direction of the ball
transfer in the extrinsic global frame of reference imposed by the 3D Soccer Server23, the
kick-height and the force of the kick. Thus, a concrete ball transfer between two players
could be characterized as executed with full kick force, low above the ground in southern
direction. It should be noted that both the direction and the height argument are taken
over immediatly from the diversification of the kick event initiating the ball transfer.

This paradigmatic example points at the fact, that diversification arguments encode
knowledge which can be propagated in a meaningful way from subordinated to more
complex motion patterns. Such a propagation may be 1:1. However, the specification
of the patterns that specialize the ball transfer further will show that propagation may
involve a transformation such as a change of reference frame as well.

23 due to the fixation of what is the left and right half field of the soccer pitch
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Motion Pattern 5.12 Alternative action pattern for a ball transfer concluded by a direct
forwarding of the ball via volley kick performed by the player acting as transfer target.

OCCURRING(ball_trans f er(

re f
︷ ︸︸ ︷
source, target,

div︷ ︸︸ ︷
dirglob:8, height, f orce), 〈s, e〉)⇐

OCCUR(kick(source, dirglob:8, height, type), 〈s, e1〉)
∧ ( type = std ∨ type = volley )
∧ OCCUR(kick(target,_,_, volley), 〈s2, e〉)
∧ Older(〈s, e1〉, 〈s2, e〉)
∧ Meets(〈s, e1〉, 〈s3, e3〉)∧Meets(〈s3, e3〉, 〈s2, e〉)
∧ ( HOLDS( f ree_ball(), 〈s3, e3〉)

∨ ( OCCUR(de f lect(_), 〈s6, e6〉)
∧ During(〈s6, e6〉, 〈s3, e3〉)
∧ HOLDS( f ree_ball(), 〈s3, s6〉)∧ HOLDS( f ree_ball(), 〈e6, e3〉) ) )

∧ Virtually_Playon(〈s, e〉)
∧ FACT(acceleration(ball, increasing), 〈s, e4〉)
∧ HOLDS(velocity(ball, vels), 〈s− 1, s〉)
∧ HOLDS(velocity(ball, vele), 〈e4, e4 + 1〉)
∧ Translate

( f orce:5
accel:6 (vels, vele, f orce)

The third diversification argument, the kick force is the result of a direct evaluation of
the pattern incidence context. Based on the qualitative velocity of the ball right at the
start (vels) and end (vele) of the acceleration phase that caused by the kick that starts
the ball transfer, Translate

( f orce:5
accel:6 (. . .) evaluates24 a qualitative force measure based upon

the qualitative distance between vels and vele as shown in figure 5.13.

Motion Pattern 5.13 Pattern for Virtual Playon

Virtually_Playon(〈s, e〉)⇐

HOLDS(playmode(playon), 〈s, e〉)
∨ ( HOLDS(playmode(mode), 〈s, e1〉)∧ HOLDS(playmode(playon), 〈s2, e〉)

∧(mode 7= playon)
∧Meets(〈s, e1〉, 〈s2, e〉) )

The specification of the ball transfer pattern also utilizes Virtually_Playon(〈s, e〉) as
extra sub-pattern which enforces the constraint that ball transfers may start in a standard
situation (i.e. → kick-in, corner-kick, kick-off) as well as during the normal course of
a game (→ playon). However, once the action has been started via a kick such that
the playmode has definitely changed to playon it needs to retain in this state for the
remainder of the ball transfer. Thus, only those transfers are allowed which evolve as
24 This method is rather simplistic in its approach and more sophisticated solutions may exist. Yet,

the simple approach suffices for the time being as the force argument of the diversification is not
evaluated further in higher-level patterns.
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Figure 5.13: Schematic representation for the interpretation of the delta between start/end
velocity (vels −→ vele . vels ≤ vele) of a kick-induced acceleration phase as kick force.
Note that the total order relation ≤ applies for the set of equivalence classes for the kick
force.

Motion Pattern 5.14 Action pattern for successful passes between fellow players of the
same team

OCCURRING(pass(

re f
︷ ︸︸ ︷
kicker, receiver,

div︷ ︸︸ ︷
dirteam:6, height, f orce, success︸ ︷︷ ︸

succ

), 〈s, e〉)⇐

OCCURRING(ball_trans f er(kicker, receiver, dirglob:8, height, f orce), 〈s, e〉)
∧ (kicker 7= receiver)
∧ (team(kicker) = team(receiver))

∧ Translate_FoR
(team:6

glob:8 (dirglob:8, team(kicker), dirteam:6)

part of the normal course of the game. Virtually_Playon(. . .) was first suggested by
Wendler in [Wen03, p.50] (cf. figure 4.3 on page 34 in chapter 4) and is implemented for
this thesis as shown in motion pattern (5.13), p.97. With respect to the formalization
of action patterns in section 5.2.2, Virtually_Playon(〈s, e〉) should be considered as an
abbreviation which ties together elements from both TRAllen and Fin f er.

The fundamental ball transfer pattern can be specialized by a further investigation of the
players that act as source/target with respect to their identity and their team membership.
In doing so, it is possible to distinguish passes between two distinct players from self
assists by single players. Passes can be further classified as successful and thus probably
intended passes, or as failed passes depending on whether source and target belong to
the same team. As the success of a pass is a characteristic trait, an additional argument
is introduced in the diversification of the pass pattern besides those taken over from the
ball transfer. Both pass scenarios are specified in distinct patterns. Motion pattern 5.14
specifies successful passes, motion pattern (5.15), p.99 specifies failed passes. Finally,
motion pattern (5.16), p.100 specifies the self assist pattern.

For passes as well as for the self assist, the frame of reference of the kick direction
is adapted from an intrinsic global perspective imposed by the 3D Soccer Server used
for the basic ball transfer pattern to another intrinsic perspective determined by the
origin of the team25 to whom the action is attributed 26. This change of the frame
25 The origin is associated with a teams penalty area/goal which is either in the northern or souther half

field viewed from the center point in the global frame of reference
26 determined by the agent that initiates the respective pass or self assist incidence with a kick
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Figure 5.14: Schematic visualization of Translate_FoR
(team:6

glob:8 (. . .). Both set of equiva-
lence classes for the global- and team-oriented perspective are shown and how they are
transformed in dependence of the respective team origin.

Motion Pattern 5.15 Action pattern for undesired failed passes

OCCURRING(pass(

re f
︷ ︸︸ ︷
kicker, receiver,

div︷ ︸︸ ︷
dirteam:6, height, f orce, failure︸ ︷︷ ︸

succ

), 〈s, e〉)⇐

OCCURRING(ball_trans f er(kicker, receiver, dirglob:8, height, f orce), 〈s, e〉)
∧ (kicker 7= receiver)
∧ (team(kicker) 7= team(receiver))

∧ Translate_FoR
(team:6

glob:8 (dirglob:8, team(kicker), dirteam:6)

of reference for motion directions has been suggested27 by Miene in [Mie04a, pp.91].
Translate_FoR

(team:6
glob:8 (. . .) is used to translate the eight directions of the global wind

rose (cf. figure 5.14) into six directions which are tied more closely to the application
domain of simulated soccer and thus contribute to a more intuitive understanding of the
characteristics of particular pass and self assist incidences. Figure 5.14 also shows the
spectrum of target classes and how they correspond to the input classes. The translation
comprises a partial coarsening through the aggregation of three direction classes to a new

27 Miene reduces eight extrinsic, global direction classes to two extrinsic, yet team-depended motion
classes forward and backward.
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Motion Pattern 5.16 Action pattern for Self Assist by a single player

OCCURRING(sel f _assist(

re f
︷ ︸︸ ︷
player,

div︷ ︸︸ ︷
dirteam:6, height, f orce), 〈s, e〉))⇐

OCCURRING(ball_trans f er(kicker, receiver, dirglob:8, height, f orce), 〈s, e〉)
∧ (kicker = receiver)

∧ Translate_FoR
(team:6

glob:8 (dirglob:8, team(kicker), dirteam:6)

Motion Pattern 5.17 Action pattern for successful atomic dribbling

OCCURRING(dribble_atom(

re f
︷ ︸︸ ︷
player,

div︷ ︸︸ ︷
dirteam:6, success︸ ︷︷ ︸

succ

), 〈s, e〉)⇐

OCCURRING(sel f _assist(player, dirteam:6), 〈s, e1〉)
∧ FACT(x_ball_control(player), 〈s2, e2〉)
∧ Meets(〈s, e1〉, 〈s2, e2〉)
∧ OCCUR(kick(player,_,_, standard), 〈s3, e3〉)
∧ ( Meets(〈s2, e2〉, 〈s3, e3〉)∨ BornBe f oreDeathO f (〈s2, e2〉, 〈s3, e3〉) )
∧ Meets(〈s, e〉, 〈s3, e3〉)
∧ C_HOLDS(distance(ball, player, close), 〈s, e〉)

entailing class back. The coarsening is motivated by the fact that the soccer game is
commonly developed forward, towards the goal line of the enemy, using passes and self
assists such that a lesser resolution of backward-directed ball movement is sufficient and
corresponds to human understanding of the game28.

Atomic Dribbling

The next action pattern, the atomic dribbling is not so much an interesting pattern in
its own right but rather a mandatory support pattern asupp (cf. definition (5.15)) for
a subordinated type 2 action sequence dribbling which will be described later in this
chapter.

The atomic dribbling builds upon a self assist which is followed by a short period of
exclusive ball control. Two possible scenarios exist for the conclusion of an atomic dribbling
which are treated with dedicated patterns. First, a successful atomic dribbling, specified in
motion pattern (5.17), p.100, ends with a kick. Second, an unsuccessful atomic dribbling,
specified in motion pattern (5.18), p.101, leads to a fight for the ball as a player from the
opposing team engages the dribbling player before the ball can be forwarded again. The
success of an atomic dribbling is a characteristic trait which accounted for in the pattern
diversification.

In both patterns for the atomic dribbling, the C_HOLDS-relation is employed to express

28 Consider live commentaries as an example, such as can be found in the description of possible game
scenarios in section 3.1
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Motion Pattern 5.18 Action pattern for unsuccessful atomic dribbling

OCCURRING(dribble_atom(

re f
︷ ︸︸ ︷
player,

div︷ ︸︸ ︷
dirteam:6, failure︸ ︷︷ ︸

succ

), 〈s, e〉)⇐

OCCURRING(sel f _assist(player, dirteam:6), 〈s, e1〉)
∧ FACT(x_ball_control(player), 〈s2, e〉)
∧ Meets(〈s, e1〉, 〈s2, e〉)
∧ OCCUR(engage_ f ight(aggressor, type), 〈s3, e3〉)
∧ Meets(〈s2, e〉, 〈s3, e3〉)
∧ C_HOLDS(distance(ball, player, close), 〈s, e〉)

Motion Pattern 5.19 Action pattern for the ball taming, a special action pattern which
documents deficiencies in the basic ball handling skills of the Virtual Werder team.

OCCURRING(ball_taming(

re f
︷ ︸︸ ︷
player), 〈s, e〉))⇐

OCCUR(receive(player), 〈s, e1〉)
∧ FACT(x_ball_control(player), 〈s, e2〉)
∧ OCCUR(retreat(player,ball), 〈s3, e3〉)
∧ Meets(〈s, e2〉, 〈s3, e3〉)
∧ FACT( f ree_ball(), 〈s3, e4〉)
∧ OCCUR(receive(player), 〈s5, e〉))
∧ Meets(〈s3, e4〉, 〈s5, e〉)

the spatial constraint that during the complete course of a dribbling, the player needs to
retain close to the ball which entails being very close or even in touch for certain sub-
intervals. In fact, these patterns motivated the introduction of the C_HOLDS-relation in
section 5.1.5 on page 78 in the first place.

A Virtual Werder Special Action – Ball Taming

The final action pattern which is specified within the scope of this thesis is a special
pattern whose conception was motivated by a idiosyncrasy in the ball handling of the
Virtual Werder agents. Due to lack of sophistication in the low-level skills, the players
commonly have to struggle considerably to gain effective control over a ball approaching
with considerable residual speed. Consequently, a player attains control over the ball,
yet looses it during repositioning in order to forward the ball and needs to attain control
again before any ball-centered action can be performed. The associated pattern is fittingly
denoted as ball taming and specified in pattern 5.19.

The ball taming documents that it is possible to compile action patterns that bear
particular relevance for a certain team, besides the general purpose action patterns that
have been discussed before.
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Motion Pattern 5.20 Action sequence pattern of type(1) for the onetwo pass amongst two
fellow players

OCCURRING(onetwo_pass(

re f
︷ ︸︸ ︷
intiator, partner), 〈s, e〉)⇐

OCCURRING(pass(initiator, partner, dirteam:6
1 ,_,_, success), 〈s, e1〉)

∧ Translate
(team:2

team:6(dirteam:6, forward)
∧ FACT(x_ball_control(partner), 〈s2, e2〉)
∧ Overlaps(〈s, e1〉, 〈s2, e2〉)
∧ OCCURRING(pass(partner, initiator, dirteam:6

2 ,_,_, success), 〈s3, e〉)
∧ Translate

(team:2
team:6(dirteam:6

2 , forward)
∧ (Meets(〈s2, e2〉, 〈s3, e〉)∨ BornBe f oreDeathO f (〈s3, e〉, 〈s2, e2〉))

5.3.3 Specification of Action Sequence Patterns

Based on the set of action patterns that has been worked out in the previous section, two
paradigmatic examples for action sequences, one for each type introduced in section 5.2.2,
are specified. They are to show that it is possible to specify complex composite concepts
concisely seizing the same formalism which have already been deployed for simple actions.
This is due to the fact that the subordinate actions are available as building blocks for
the specification of high level motion patterns such that the specification is performed
on a growing level of abstraction while retaining the possibility to fall back on simple
concepts/facts.

Onetwo-Pass

First, the give’n’go- or onetwo pass is specified in motion pattern (5.20), p.102 as an ex-
ample for a simple multi-player action sequence. A coarsely forward-directed pass is played
by an initiating player to a supporting team member which,after a short phase of exclusive
ball control, forwards the ball back to the initiator again via a coarsely forward-directed
pass. The constraint that both passes should be coarsely forward-directed is due to the
characterization of the onetwo pass as a means of developing the game often outsmarting
a particular defending player. Translate

(team:2
team:6(. . .) is used to coarsen the six team-specific

direction classes shown in figure 5.14 on page 99 used in the pass diversification, the five
possible direction classes except backward into the single new class forward. Then, due
to the use of forward as a constant, the term Translate

(team:2
team:6(dirteam:6, forward) in the

pattern specification expresses precisely the desired constraint.

Extended Dribbling

As a second action sequence pattern of type 2, the pattern for extended dribblings is
specified in motion pattern (5.21), p.103. As already suggested in the formal description
in section 5.2.2 on page 85 of patterns for type 2 action sequences, those patterns are
primarily concerned with the proper composition of already recognized support patterns.
This is reflected in the specification of the extended dribbling, which says that either a
new dribbling has begun in which case the dribbling immediatly corresponds to the basis
action. Alternatively, an existing, successful dribbling can be continued via another atomic
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Motion Pattern 5.21 Action sequence pattern of type(2) for the extended dribbling com-
posed of a sequence of atomic dribblings (cf. motion pattern (5.17), p.100 and motion
pattern (5.18), p.101).

OCCURRING(dribbling(

re f
︷ ︸︸ ︷
player,

div︷ ︸︸ ︷
dirteam), 〈s, e〉)⇐

OCCURRING(dribble_atom(player, dirteam:6, success), 〈s1, e〉)
∧ ( ( OCCURRING(dribbling(player, dirteam:6

1 , success), 〈s2, e2〉)
∧ Meets(〈s2, e2〉, 〈s1, e〉)
∧ ( dirteam:6

1 = dirteam:6 )
∧ HeadToHeadWith(〈s, e〉, 〈s2, e2〉) )

∨ Equals(〈s, e〉, 〈s1, e〉) )

dribbling.
As an additional spatial constraint for extended dribblings, it is required that a dribbling

that is a composition of multiple atomic dribblings retains a fixed direction.
The specification of the extended dribbling concludes the specification of event-, action-

and finally action sequence patterns that are to be employed in the detection of concrete
motion situations. Not all of the actions called for in section 3.4 have been seized in the
development of concrete action patterns for the detection process such as scoring. As a
consequence, the extension of the pattern pool will be an issue in the outlook at the end
of this thesis.

5.4 Detection of Extensive Motion Instances

Over the course of the current chapter, it has hitherto been shown in section 5.1, how
the fundamental tier of a qualitative knowledge base comprised of spatio-temporal atomic
facts can be compiled incrementally during the term of games of simulated soccer (viz.
f ∈ F′ inst← Fassert). Basic means were introduced for simple inferences upon the existing fact
pool F′ via the HOLDS and C_HOLDS predicates (Fin f er). Subsequently, in section 5.3,
a knowledge engineering process contributed another tier of qualitative knowledge in the
shape of motion patterns (E∪A) which explicitly encode domain expertise with respect
to the composition of events, action and action sequences.

The detection of concrete motion incidences, which is considered synonymous with the
term spatio-temporal analysis of dynamic scenes with respect to the scope of this thesis,
is to be performed interchangeably with successive passes of qualitative abstraction. It
can be understood as a matching task of the spatio-temporal patterns (E∪A) against
the momentary fluent content (F′ ∪ E′ ∪ A′) of the qualitative knowledge base which
comprises the qualitative description of a particular game so far. Lattner notes that ”the
process of pattern matching assigns objects to variables of a pattern in a way that all
conditions of the pattern are satisfied.” [Lat07, p.24]. Successful matchings against the
specified motion patterns lead to new motion incidences which in return broaden the
fluent content of the knowledge base and thus allow for the finding of successive matches
(i.e. e ∈ E′ inst← E or a ∈ A′ inst← A respectively).

In the following, a methodology for the concrete implementation of the pattern matching
task is presented.
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5.4.1 Basic Detection Methodology

First of, with respect to the concrete implementation of the matching methodology
in a functional technical system, the adaption of general purpose means for patterns
matching has been considered a superior alternative compared to the development of
a self-grown matching solution based on incremental event/action tracking as proposed
by [Wen03, Mül02]. This decision is clearly substantiated by preliminary research by Jan
Gehrke who demonstrated in [Geh05] the feasibility of a successful employment of a gen-
eral purpose, logic-based reasoning system (XSB Prolog [SSW+06b, SSW+06a]) for the
detection of event incidences under real-time constraints for a limited set of actors in
simulated urban and highway traffic scenarios. The approach proved that logic program-
ming is in principle well suited for generalized pattern matching and can be extended to
handle the special case of spatio-temporal pattern matching as well. At the same time,
the use of a logic-based reasoning system is attractive due to the possibility to profit from
declarative programming, and still bears the promise of sufficient efficiency for real-time
employment. Alternative approaches such as [NM06] which are concerned with scene
interpretation using description logics have been studied as well. However the published
results in that area suggest, that as of writing this thesis, logic programming is still better
suited for a pragmatic system design, intended for this thesis.

In logic programming, which is the most widely used form of automatic reasoning accord-
ing to [RN95], logical inference is realized via backward chaining strategies. As the motion
patterns compiled in section 5.3 correspond to first-order definite clauses where the premise
(body) specifies the inner composition of the respective pattern while the consequence
(head) specifies the pattern signature, the formalization of the motion patterns worked out
so far can be transfered with minimal change into a concrete logic programming language
such as Prolog29. In fact, the formalization of motion patterns in section 5.3 already
seized two meta-logical functions (not f (. . .), seto f (. . .) ∈ META ⊂ dom(Pact|event(c, i)))
which have been introduced with Prolog in order to enhance expressiveness for pattern
specification. Once the spatio-temporal predicates/functions SR∪TRFreksa ∪TRAllen are
expressed in a suitable way, the spatio-temporal pattern matching can handled via stan-
dard logical inference that relies upon sophisticated backward chaining algorithms whose
basic principles are outlined in AI textbooks such as [RN95, pp.287]. Consequently, the re-
mainder of this section will focus on how to employ logical inference for pattern matching
effectively.

A first step in the implementation of an efficient, incremental detection strategy involves
finding a course order of detection for the set of available motion patterns (E∪A) to be
applied beneficially in each consecutive detection pass. For that matter, it is possible to
arrange the motion patterns in a hierarchy with respect to the maximum level of complexity
of the substantial constituents (Fassert ∪ Fin f er ∪E{∪A}) in their respective pattern body
as follows: First, atomic (Fassert) as well as inferred atomic facts (Fin f er) constitute a
fundamental level of complexity (level 0). The hierarchical level of the extensive motion
patterns, both events and actions alike, evaluates to the level immediatly above the highest
level of any substantial constituent appearing in the respective pattern body. Thus, the
patterns for the exclusive kick or the reception of the ball reside on level 1, while the ball
transfer whose specification comprises both of the aforementioned patterns besides simple
facts resides on level 2.

Each consecutive detection pass di can then be implemented as a bottom-up search for
new motion incidences with respect to the aforementioned pattern hierarchy. Each pass
begins with patterns of level 1 whose body can be matched against the momentary pool
of atomic facts F′i alone, either directly in case of FACT(. . .) constituents or indirectly

29 Prolog (PROgramming in LOGic) is mentioned here as it is undoubtedly the most widely employed
exponent of logic programming languages with considerable employment in both research and econ-
omy.
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via subordinate matching of patterns associated with HOLDS(. . .) and C_HOLDS(. . .).
As new motion incidences are detected (viz. assignments of the respective pattern head-
/signature not yet entailed in E′i ∪A′i are found) the results are fed back immediatly into
the pool of momentary fluent content (F′i ∪E′i ∪A′i). This is crucial as it allows for an
immediate intra-pass reuse of the partial detection yield attained so far. Higher-order
patterns whose body comprises subordinated events and/or actions can be matched sub-
sequently against a freshly updated pool of fluent content. In particular OCCUR(. . .)
and OCCURRING(. . .) constituents in the respective pattern body can be matched di-
rectly against E′i ∪A′i30 due to the bottom-up detection which makes sure, that pattern
constituents are always detected beforehand.

Thus, in order to detect new ball transfer incidences (ball transfer → level 2), a
direct matching is performed against already asserted kick- and reception incidences
(kick,reception → level 1). In order to detect new pass/self assist incidences (pass/self
assist → level 3), a direct matching is performed against already asserted ball transfers.
And finally, in order to detect new onetwo pass incidences (onetwo pass → level 4), a
direct matching is performed against already asserted passes.

5.4.2 Balancing the Amount of Atomic Facts as the Game Evolves

The detection process outlined so far features a signification Achilles’ Heel in the shape of
the charging level of the qualitative knowledge base with respect to the fluent contents.
The problem grows in significance as the number of passes for both qualitative abstraction
increases. The underlying problem is that the performance of the pattern matching task
with respect to execution speed is reciprocal to the size of asserted low-level facts and – to
a far lesser extent – the motion incidences that constitute the pool of match candidates.

With respect to a balancing of F′, it is instructive to review the spectrum of atomic
qualitative facts which are compiled relentlessly in the successive passes of the qualitative
abstraction with respect to the stated goal of the spatio-temporal analysis at hand which
is to compile an expressive, qualitative description of the situation on the soccer pitch
such that the agents’ understanding of the game is increased and behavior/skill develop-
ment becomes feasible on a higher, more intuitive basis (cf. section 1.2.1 on page 4 for
reference).

Contemplating the growing F′ with respect to this statement of affairs, it must be noted
that for the largest part of asserted facts such as:
HOLDS(distance(ball,pl1,medium), 〈330,520〉)
it holds that they posses no immediate informational value for a coach or player in their
own right. Rather, they act solely as building blocks for higher-level concepts. Thus, once
it becomes clear, that those facts will no longer contribute any more to the matching of
new motion instances, as those are detected based on facts that reside in a certain time
frame of maximal extend measured from the momentary present of detection, they can
be safely removed from F′ without losings in the relevant knowledge stored in the fluent
content of the knowledge base or constraints on the detection process. To be more precise,
those facts whose validity has expired such that the whole validity interval of the particular
fact resides completely beyond the relevant time frame in the past can be subjected to
oblivion.

For a concrete implementation of a fact oblivion strategy it is mandatory to have a
suitable heuristics that determines the extend of the oblivion time frame. A simple,
yet sufficient approach is to empirically determine the maximum length l of any motion
incidence in the concrete application scenario whose associated motion pattern still seizes
constituents Fassert ∪ Fin f er in its pattern body. It is then safe enough to assume that for

30 E′i ∪A′i entails both detection results from completed previous detection passes d0 to di−1 as well as
the partial detection yield obtained so far within the momentary detection pass di.
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any practical means, facts whose validity expired before now− l can be removed.
The employment of an oblivion strategy should balance the size of F′ effectively. The

subject of fact oblivion is addressed again in the description of the concrete system im-
plementation in chapter 6 and in the evaluation in section 7.4.3.

5.4.3 Guidance for Detection

With respect to the real-time efficiency demands on the detection of new motion inci-
dences in successive passes di, it is compulsory to employ a detection strategy which
is suitable to selectively guide the course of the recognition, rather than resorting to a
brute force strategy that tries and detect new incidences for each available motion pat-
tern in E ∪A, regardless of the particular situation on the simulated soccer pitch and
the detection yield obtained already in an existing cycle. The goal is to try and perform
the matching for a certain pattern only if the current course of the detection pass has
hitherto already provided necessary and sufficient indicators for either a certain detec-
tion success or the well founded possibility thereof. Appropriate decision heuristics for or
against detection attempts can be derived of the observation that the motion incidences
are not necessarily independent entities but may also be related via certain relationships
to subordinate incidences such that the detection of the latter during a detection pass
triggers the detection of superordinate motion incidences in the first place. In the follow-
ing paragraphs, two trigger scenarios are considered, namely specialization triggering and
tail_to_tail triggering.

First, in section 5.3.2 it has been shown with the family of ball transfer actions, that
motion patterns can sometimes be direct specializations of subordinate patterns (such as
pass,self_assist – ball_transfer). Due to the fact that specialized patterns are detected
subsequent to their respective generalization during the course of a detection pass as they
are in a natural way located higher in the pattern hierarchy, it is evident that a detection
attempt is only promising once the detection of the generalized pattern has already yielded
a concrete result. In this case, the general motion incidence is due to be further specialized
within the same detection pass. Otherwise, it is sound to skip the detection attempt for
specialized concepts as they are bound to fail. Thus, specialization triggering is a valid
first means of guidance for the detection process.

However, with respect to the concrete pool of motion patterns developed in section 5.3
it becomes evident that specialization triggering alone can provide only moderate savings
in the number of detection attempts per pass due to the fact that direct pattern special-
ization is used sparsely. However, a second relationship can be derived from the internal
composition of the specified motion patterns which leads to the means of tail_to_tail
triggering which is applicable for a greater subset of patterns. The concept can be exem-
plified via a closer inspection of ball transfer incidences which reveals that the ending of
those incidences coincides necessarily with the ending of a particular subordinate motion
incidence, namely regular ball receptions or a direct forwarding of the ball via volley kick.
This effect is a direct consequence of the concrete specification of the associated ball
transfer motion pattern(s) as introduced in section 5.3.2.

Generalizing from the particular example to the general circumstance it can be said,
that for a particular motion pattern, one or more closing events/actions may exist, which
are denoted here as atomic tail_to_tail triggers, paired with a distinct fulfillment policy
for the special case of multiple atomic tail_to_tail triggers. Within a detection pass
di the detection of a pattern associated with a single tail_to_tail trigger is attempted
once a trigger incidence has been added already to the momentary, partial detection
yield. For the detection of a pattern associated with multiple tail_to_tail triggers, the
fulfillment policy determines that a detection is attempted either if instances for at least a
single tail_to_tail trigger (→ existential-policy, mnemonic: ∃) or all specified tail_to_tail
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Level Target Pattern Trigger Type Trigger Pattern
Events
1 kick(. . . , std) TTT starts→ ball_ f ree()
2 kick(. . . , co) SPE kick(. . . , ex)
1 receive(. . .) TTT starts→ ball_ f ree()
1 start_ f ight() TTT starts→ f ight_ f or_ball()
1 de f lect(. . .) TTT starts→ ball_ f ree()
Actions
2 ball_taming(. . .) TTT receive(. . .)
2 ball_trans f er(. . .) TTT(∃) receive(. . .); kick(. . . , volley)
3 pass(. . .) SPE ball_trans f er(. . .)
3 sel f _assist(. . .) SPE ball_trans f er(. . .)
2 dribble_atom(. . .) TTT(∃) kick(. . .); engage_ f ight(. . .)
Action Sequences
3 dribbling(. . .) TTT dribble_atom(. . .)
4 onetwo_pass(. . .) TTT pass(. . .)

Table 5.1: Specialization triggering- (SPE) and tail_to_tail triggering (TTT{∃‖∀}) rela-
tions for the event patterns (cf. section 5.3.1, pp.90) and action patterns (cf. section 5.3.2,
pp.95) specified for the RoboCup 3D Soccer Simulation.

triggers (→ universal-policy, mnemonic: ∀) have been added to the detection yield.
Both means, the specialization triggering as well as the tail_to_tail triggering can

be used in an XOR-fashion for a considerable subset of all specified motion patterns
thus leading to a noteworthy decrease in the number of actually attempted detections
with respect to the maximum number of possible attempts, especially for those detection
passes when the ball is traveling freely after a kick. The association of appropriate triggers
is part of the knowledge engineering task and succeeds the formal specification of the
motion patterns. The trigger associations which have been identified for the pattern pool
developed in section 5.3 are specified in table 5.1. The table embraces only a subset of
specified patterns as it is not always feasible to find suitable triggers of the given kind.

The influence of the detection strategy is evaluated in section 7.4.2 on page 139 where
the fundamental brute force detection strategy is compared performance-wise with the
guided detection approach outlined above.

A possible road for further investigation with respect to an enhanced detection guidance
would comprise the introduction of additional triggers based on certain properties of the
momentary situational context that do or do not hold for particular detection passes as
well as events/occurrences/general change in the situational context. It is expected that
further futile detection attempts could be avoided with such an extension.
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6
The Realized Analysis Framework

Subsequent to the conceptual design of the spatio-temporal analysis system for dynamic
scenes with a focus on real-time aptitude, the chapter at hand is concerned with the
realization of a working prototype of the proposed analysis approach.

Section 6.1 takes up the thesis’ leitmotif with an overview of the implemented analysis
framework, in the following referred to as SCD which is an abbreviation for: Segmentation,
Classification & Detection1. The overview describes the components that have been
implemented as part of this thesis and how they integrate into the RoboCup 3D Soccer
Simulation environment.

Based on this introduction, section 6.2 on page 111 delves deeper in the modular de-
sign and the implemented functionality of the SCD Core. The course of action within
each analysis cycle is detailed where section 6.2.1 is concerned with the qualitative ab-
straction while the detection of extensive motion incidences is discussed subsequently in
section 6.2.2.

In succession, section 6.3 on page 120 is concerned with the integration and deployment
of the SCD Core Library both into agents residing in the RoboCup 3D Soccer Simulation
and standalone applications. The former deployment is denoted as LiveSCD and was
implemented exemplary for an advanced SCD Coach agent2. The latter deployment was
realized for evaluation purposes in the SCD Simulator.

The chapter concentrates on providing a high level overview of the implemented func-
tionality. For a deeper, code-level description, it is referred to the doxygen-documentations
(in html) that are included in the DVD distributed with this thesis (cf. appendix A.1).

6.1 Overview of the SCD Framework

In order to provide the reader with a general overview of the implemented SCD framework
in the first instance, a suitable starting point is the description of the distinct components
whose interplay renders possible the desired SCD analysis operation and the way the SCD
1 The synonym SCD was chosen as the SC part reflects the task area of qualitative abstraction (cf.

section 5.1) while the D part reflects the detection of extensive motion incidences (cf. section 5.4).
2 derived from the standard Virtual Werder 3D Head Coach, a fusion of a UTUtd 3D coach

agent [ABD+06, p.2] and a standard RoboCup 3D Soccer Monitor [O+06]
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Figure 6.1: High-Level overview of the SCD software module (in yellow/brown tones)
paradigmatically embedded into a RoboCup 3D Soccer Simulation League agent (in
green/grey tones).

framework can be embedded and conducted by applications.
The SCD framework was designed as a self-contained, platform-independent software

module which can be integrated easily into existing applications such as Virtual Werder
3D soccer agents (both coach and players) acting in the RoboCup 3D Soccer Simulation
environment3. The claim about platform-independence is substantiated, since the SCD
framework was developed and tested primarily on an Apple Powerbook (1.25 GHz G4
processor → PowerPC architecture) running Mac OS 10.4 ’Tiger’, with additional devel-
opment and testing being performed on standard PC hardware (Intel P4 3.0 GHz processor
→ x86 architecture) running Ubuntu 7.04 ’Feisty Fawn’. Thereby, both architectures are
supported by all SCD framework components without restrictions. In order to induce low
integration costs on the embedding client4, the SCD module exposes a concise application
interface to its clients. It is basically comprised of a.) an abstract interface that needs to
be implemented for the retrieval of elements of the momentary quantitative world state
perception (cf. figure 6.1, ’data acquisition’), and b.) a management module that encap-
sulates the analysis functionality and exposes solely a single invocation method that allows
clients to activate the execution of a complete analysis cycle (cf. figure 6.1, ’invocation’).
This type of minimal interface to the implemented SCD software module was chosen in
order to achieve a broad applicability. Irrespective of the particular implementation of
the quantitative knowledge base of a SCD client, once a bridge that implements SCD’s
abstract input interface exists, the SCD software-module can be embedded immediatly.

Over the complete course of its employment, the SCD module pursues the incremental
compilation and maintainance of a comprehensive qualitative knowledge base. Therefore,
in each percept-reason-act cycle, the analysis is to be called subsequent to the processing
and integration of a fresh incoming vision message into a quantitative world model and

3 Figure 6.1 outlines schematically how the SCD framework is embedded in an RoboCup soccer agent
4 In the context at hand, the term ’client’ refers to the respective application which integrates/uses the

functionality provided by the SCD software module. This denotation is distinct from the understanding
of ’client’ as in the client/server distinction.

http://www.robocup.org
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conceptually before the execution of an agent behavior5.
A working SCD module that performs its two primary tasks, the qualitative abstraction

of dynamic scenes provided through the global input interface and in succession a detection
of extensive motion incidences, is a hybrid software entity with a C++ and a Prolog aspect.
While the interface to client applications, the control logic for the SCD operations and
the qualitative abstraction are implemented in C++6, the qualitative knowledge base and
important parts of the detectors for extensive motion situations rely upon an XSB7 Prolog
backend. The connection of the Prolog system is managed transparently for the respective
embedding application by the SCD control.

Due to its hybrid character and a software design which emphasizes in particular com-
prehensive configuration capabilities of both qualitative abstraction and detection, the
SCD framework is comprised of three main constituents: first, the SCD Core library. Sec-
ond, the XML-configuration which determines both scope and style of the qualitative
abstraction and the scope of the detection. And finally, a set of Prolog rules.

6.2 SCD Core Functionality

The preceding section detailed that from the point of view of an application embedding
the SCD system, its functionality is hidden behind a particular control module which can
be asked explicitly to perform a complete analysis pass of the dynamic scene, based on an
updated momentary world state perception accessible via the input interface (denoted fur-
ther on as Extractor_Worldstate). Internally, this main SCD control module, called Map-
per_SCD, integrates the complete SCD functionality which is provided by three specialized
submodules: a.) the mapping of invariant facts controlled by the Invariant_Control, b.)
the mapping of fluent, atomic facts controlled by the Classification_Control and finally c.)
the detection of motion incidences controlled by the Recognition_Control. The first two
submodules jointly realize the qualitative abstraction. That is, they transform the quan-
titative world state data provided by the Extractor_Worldstate into a fundamental pool
of qualitative facts that is stored in the Prolog knowledge base. The detection of motion
incidences is performed subsequent to the qualitative abstraction. At the time of writing,
the detection relies on the available qualitative data alone. Thus, it is detached from
the quantitative input provided by the embedding application. The outlined statement of
affairs is shown concisely in figure 6.1 on the facing page.

6.2.1 Qualitative Abstraction

The first aspect of qualitative abstraction, performed by the Invariant_Control bears par-
ticular relevance during the initial phase of the analysis of a simulated soccer match. It
comprises the compilation of invariant facts that are dependent on the concrete game at
hand such as the team and role association of each player and the team origins. Concep-
tually, invariant facts differ from atomic facts F′ as introduced in the concept chapter in
that they are not fluent in character, i.e. bound to a certain validity interval8. Rather,
once asserted in the scope of an analysis run which retains a fixed game context, those

5 Due to the hitherto missing interface for an exploitation of the compiled qualitative knowledge, analysis
results are not yet fed back to the embedding application for further exploitation.

6 relying heavily upon object-oriented software design techniques such as advanced polymorphism and
template programming and the excellent Boost C++ Libraries [Kar05] http://www.boost.org (vis-
ited:28/09/2007)

7 The most recent stable versions XSB 3.0.1 ’Sagres’ and XSB 3.1 ’Incognito’ both available at
http://www.xsb.sourceforge.net (visited:28/09/2007) were used

8 Consequently they are expressed as simple predicates p ∈ P′ rather than via FACT(pred, i) ∈ F′ . i ∈
I‖ ∪ I' (cf. section 5.1.5 on page 78)

http://www.robocup.org
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facts can be considered unchangeable background information which can be exploited in
motion patterns9 besides regular atomic facts.

The second, comparatively extensive aspect in the qualitative abstraction, performed
by the Classification_Control module, comprises the abstraction of the world state data
into the qualitative ground predicates specified in section 5.1.1 on page 56 using the
classification concepts that have been proposed in section 5.1.3 on page 64, and thereupon
the compilation of atomic facts with temporal dimension using the ’explicit-lengthening’
fact assembly strategy proposed in section 5.1.1 on page 56.

Both modules, Invariant_Control and Classification_Control, are called in immediate
succession by the supervising Mapper_SCD instance at the beginning of each external
analysis invocation. Subsequent to a successful invocation of both abstraction-related
management modules, the qualitative knowledge base has been updated such that based
here-upon, a new detection cycle for extensive motion incidences can be initiated.

Compilation of Invariant Facts

Following the order of invocation in the analysis cycle, the Invariant_Control is described
first in more detail.

When the Invariant_Control module is instantiated on startup, based on the specifica-
tion in the SCD Configuration the desired subset of specialized invariant mappers, each
responsible for a single type of invariant facts is loaded into the system. The small set of
implemented mappers comprises:

Mapper_Invariant_Role → role(player, symrole) . symrole ∈ {goalie,field_player}

Mapper_Invariant_Team → team(player, team_name)

Mapper_Invariant_Origin → origin(team_name, symorig) . symorig ∈ {south,north}

When the Invariant_Control is called by the Mapper_SCD, the loaded mappers are called
sequentially. However due to their function to compile invariant facts, the mappers need
not be called in each successive analysis pass over the whole course of the game. Typically,
once the Extractor_WorldInfo provides sufficient raw data, the mappers can compile the
full set of invariant facts, such as the role and team association for each player partici-
pating in the soccer match at hand, in a single analysis cycle and immediatly store those
facts in the qualitative knowledge base for further use via a specialized messenger class
(XSB_Messenger_Invariant), that provides a concise interface for the generic assertion of
invariants. This messenger is built upon the efficient XSB low-level C-interface10. Once a
particular mapper has thus fulfilled its intended purpose, it informs the Invariant_Control
of its success which consequently removes that particular mapper from its call map.

Thereby, soon after the beginning of an analysis run, the Invariant_Control runs out of
work and subsequent invocations thereof preceding the call to the Classification_Control
return immediatly without the Invariant_Control contributing further to the qualitative
abstraction.

Compilation of Atomic Fluent Facts

Once called by the Mapper_SCD, the scope of duties of the Classification_Control, whose
design is shown schematically in figure 6.2 on the next page, can be distinguished in a.)
9 Confer to the pass patterns (cf. patterns 5.11, 5.12) specified in section 5.3.1 as they seize the team

association of source/target of a ball transfer which is an invariant fact in order to determine the
success characteristic.

10 documented in (→ http://xsb.sourceforge.net/manual2/node34.html (visited:27/09/2007)).

http://xsb.sourceforge.net/manual2/node34.html
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Figure 6.2: Schematic overview of the Classification_Control module which is responsible
for the qualitative abstraction of fluent atomic facts (F′).

a pre-processing step which comprises the application of a focus strategy (cf. figure 6.2,
step (1)), b.) the execution of the actual mapping operation (cf. figure 6.2, steps (2)–
(4)) and c.) a post-processing step which comprises the application of the implemented
oblivion strategy for atomic facts (cf. figure 6.2, step (5)).

Step 1: Pre-Processing or Applying the Focus Strategy In section 5.1.6 on page 82, it
was argued that with regard to an efficient implementation of the qualitative abstraction,
it is essential to determine a subset of all objects and object pairings that, according a
dedicated heuristic, is considered ’relevant’11 such that only those qualitative predicates
which refer to ’relevant’ objects/object relations need to be tracked by the qualitative ab-
straction. The Focus_Control implements the heuristic proposed in section 5.1.6. When
the module is called in an abstraction cycle, it determines the sets of objects and object
pairs which reside within the momentary focus of attention. Subsequently, a reconciliation
is performed with the stored sets of focused objects/object pairs compiled in the previous
call. Thus it is possible to determine additionally the respective sets of those objects/ob-
ject pairs that either just left or entered the focus of attention. All of these pieces of
focus information are stored internally and can be retrieved by the Classification_Control
while conducting the three stages of actual quantitative-to-qualitative mapping.

Before continuing with a high-level description of the latter process, it should be men-
tioned that the focus heuristic proposed in this thesis has been hard-coded within the Fo-
cus_Control module for the prototype implementation. However, as the Focus_Control
module effectively encapsulates the heuristic implementation, a more flexible, configurable
replacement thereof is conceivable since necessary changes are localized and thus do not
affect other parts of the SCD framework.

Steps 2-4: Mapping of Atomic Facts Once the pre-processing task is completed, the ac-
tual incremental compilation of atomic facts F′ can be performed. As figure 6.2 indicates,

11 The scope of what is ’relevant’ is essentially preset by the employed pool of motion classes whose
concrete occurrences are to be detected.
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the process is decomposed in three successive tiers. In each thereof, atomic facts that
encapsulate predicates of a certain reference arity12 are compiled. The particular mapping
steps, denoted as Zerovalent Mapping, Univalent Mapping, and Bivalent Mapping in fig-
ure 6.2, are not especially encapsulated in particular management modules. Rather, the
Classification_Control manages three sets of mapping engines. Each of those can be con-
ceived as a self-contained classification unit that bears responsibility for the incremental
compilation of facts associated with a distinct predicate equivalence class13.

Specialized versions of these mapping engines exist that handle predicates of the afore-
mentioned reference arities. The respective instantiations thereof which are embraced
in one of the sets managed by the Classification_Control share a common invocation
interface.

In a default deployment of the SCD framework as implemented for this thesis, the first
managed set (associated with Zerovalent Mapping) entails a single mapping engine for the
playmode. The second set (associated with Univalent Mapping) entails mapping engines
for velocity, acceleration, z_position, z_position_trend, motion_dir and the incidence
region in_region of movable objects. The third set (associated with Bivalent Mapping)
finally entails mapping engines for distance and s_orientation of pairs of movable objects.
Thus, the mapping engines span the complete set of qualitative predicates specified in
section 5.1.1, pp.57. It is possible to customize the respective sets of mapping engines
for an analysis run as each can be deactivated independently in the SCD configuration.

During a complete cycle of qualitative abstraction, the supervising Classification_Con-
trol iterates sequentially over the three managed sets of mapping engines, thereby calling
each with their respective subset of relevant focus data, provided by the Focus_Control.
Then, internally each mapping engine handles the details of the compilation of new facts
associated with its predicate equivalence class without requiring further interplay with the
Classification_Control. It should be noted that due to the mutual independence of the
mapping engines, the particular mapping order constitutes only a convention and that
furthermore, from a conceptual point of view, a concurrent implementation is conceivable
for future performance optimization of the mapping process14.

In order to achieve a flexible implementation that can be easily extended with additional
mapping engines, the latter have been designed as generic control modules which rely upon
means provided by the Classification_Control on creation for a.) the individually suitable
acquisition of quantitative input data and b.) the insertion of compiled facts into the
qualitative knowledge base (cf. figure 6.3 on the facing page).

For data acquisition, the Classification_Control manages a comprehensive set of spe-
cialized extraction adaptors that have access to the global Extractor_WorldInfo and thus
the full momentary world state information (cf. section 5.1.1, pp.56). These adaptors
extract and pre-process subsets of the available raw input for immediate further use in the
classification process conducted by the respective mapping engines. Conceptually, each
of the implemented adaptors can thereby be thought of as access to one of the uni- or
multivariate time series specified in section 5.1.1, pp.57.

The Classification_Control also holds a specialized messenger module, the Messen-
ger_Fluent that allows for performance-optimized assertion/retraction of arbitrary atomic

12 The concept of predicate’s reference was introduced in section 5.2.3 on page 88. The reference
arity denotes the amount of reference attributes which can be 0 (class(pred) ∈ P0), 1↔single object
(class(pred) ∈ P1) or 2↔object pair (class(pred) ∈ P2).

13 With respect to the predicates considered here, the term ’equivalence class’ denotes the set of concrete
predicates that share the same signature, i.e. a.) the denominator and b.) the attribute list such as
velocity(ob j, symvel) ∈ P1 . ob j ∈M O , symvel ∈ SYMvelocity or distance(ob j1, ob j2, symdist) ∈ P2 . ob ji ∈
M O , symdist ∈ SYMdist

14 This assessment is based on the conceived software design for the Classification_Control and the XSB
Prolog support for multi-threaded programming introduced with the 3.0.1 ’Sagres’ release [SSW+06b,
chapter 7, p.173–184].
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Figure 6.3: Detailed overview of the inner composition of a single mapping engine (→
Mapper_Unary) and its internal program flow.

facts – as well as detected motion incidences (both events and actions) – into/from
the Prolog knowledge base. The implementation of the Messenger_Fluent does not rely
on the common XSB C-interface documented in [SSW+06a, p.54–62], but rather seizes
the underlying ’low-level C-interface’15. Thus, it allows for a C++/Prolog communica-
tion with a minimum of overhead16. A single Messenger_Fluent instance handles the
complete interaction with the Prolog knowledge base. Looking forward, this particular
statement of affairs rendered it possible to assign the additional task of fact oblivion to
the Messenger_Fluent (cf. paragraph 6.2.1 on page 117).

Turning the focus of attention back to the composition of the mapping engines, while
the I/O of the mapping engines has been outlined, another compulsory element still re-
quires introduction, namely the fundamental classification core that builds the bridge from
quantitative input17 to symbolic values (cf. section 5.1.1, pp.57). The set of generic classi-
fication cores that has been implemented for this thesis corresponds to the classifier types
that have been formally proposed in section 5.1.1 on page 5618. Each mapping engine
obtains its desired classification core from a dedicated concrete factory which constructs
the desired type of core19 based on a comprehensive specification in the configuration
(cf. figure A.1 on page 165) of the mapping engine whose scope corresponds to the
interval-to-class associations detailed in section 5.1.1, pp. 57.

Each mapping engine is responsible for the compilation of spatio-temporal atomic facts
associated with a distinct predicate equivalence class. Zerovalent mapping engines con-
stitute the most simple case. When called by the Classification_Control the engine uses
its extraction adaptor to acquire a single piece of input data which is consequently fed

15 A dedicated web site with online documentation is available at:
http://xsb.sourceforge.net/manual2/node34.html (visited:03/11/2007)

16 Such as message processing/parsing
17 preprocessed time series data provided by an extractor adaptor
18 and an additional simple classification core for symbol to symbol translation required for the mapping

of the playmode
19 i.e. an implementation of either Classi f ier1

open, Classi f ier1
ring, Classi f ierRegion or a symbol-translation

classifier

http://xsb.sourceforge.net/manual2/node34.html
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into its single classification core. The core determines the symbol associated with the
input data. If the mapping engine is called for the first time, the representation of a new
atomic fact with a right-open validity interval is compiled, and the Messenger_Fluent
is used to enter this new fact into the qualitative knowledge base. In subsequent calls,
the mapping engine determines whether the momentary classification result is d’accord
with its immediate predecessor. If so, the atomic fact most recently entered into the
knowledge base still reflects the current state of affairs and the mapping operation is
finished early20. Otherwise, the most recently entered atomic fact is revised, replacing
its right-open variant in the knowledge base with a closed variant, now that the end of
the respective validity interval is known. Immediatly thereafter, another atomic fact with
right-open validity interval that reflects the new situation is issued to the knowledge base.
This incremental fact compilation scheme is repeated over the complete course of the
analysis run.

Vis-à-vis the zerovalent case, multivariate mapping engines feature a notably more com-
plex internal composition and application flow, reflected in figure 6.3 on the preceding
page. This is due to the fact that the latter types of mapping engines essentially operate
as dynamic multivariate classifiers as they are responsible for the classification (and sub-
sequent fact assembly) of a dynamically changing subset of conceivable ’variations’ of a
particular predicate equivalence class such as:
distance(ob j1, ob j2, symdist) ∈ P2 . ob ji ∈M O , symdist ∈ SYMdist

A particular variation is thereby characterized by a unique, complete instantiation of the
predicate class’ reference attributes:
distance(ball, vw3d_6, symdist) ∈ P0 . {ball, vw3d_6} ⊂M O , symdist ∈ SYMdist

Thus, with respect to the mapping task at hand, each predicate variation can be treated
like a zerovalent predicate. The additional complexity in multivalent mapping is thus
broken down to the management of a temporally fluctuating set of zerovalent mapping
tasks.

When a multivalent mapping engine is called by the Classification_Control, the mo-
mentary focus data (objects/ordered objects pairs (RID21) in/entering/leaving focus of
attention) is handed over. Based on this data base the mapping engine can update its
internal data structures in a two-tier pre-processing ahead of the actual mapping process.
Based on the set of RIDs that have entered the focus of attention in the momentary call
cycle, the mapping engine can determine whether or not it has both already created a
dedicated copy of its classification core and prepared the extraction adaptor (i.e. created a
dedicated copy of the respective time series preprocessing filter22) for each particular RID.
If for any RID the answer to both questions is no, this means that the associated movable
object or ordered pair of movable objects enters the focus of attention for the first time
in the analysis run. Following a least commitment strategy, the required resources are
provided now that a concrete demand has been detected. Once the list of entering RIDs
has been processed, it is guaranteed that the necessary means for a classification of the
associated predicate variations exist. In the second preprocessing tier, the set of RIDs that
have left the focus of attention is processed. The classification cores and filters in the
extractor adaptor associated with the elements in the set are reset to their default mode,
such that a fresh classification can begin once the particular RID re-enters the focus.

Having successfully updated the internal data structures, a multivalent mapping engine
begins the actual mapping operations for each predicate variation specified by the set of

20 Without fruitless interaction overhead between the mapping engine and the Prolog knowledge base
via the Messenger_Fluent

21 Subsequently RID is used as an abbreviation for the respective ordered tuple of reference attributes,
a single moving object in the univalent case and an ordered pair thereof in the bivalent case.

22 Available filters comprise a Weighted Moving Average (WMA, (cf. figure 6.3 on the previous page))
and an Exponential Moving Average (EMA) implementation
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momentary RIDs in focus. The distinct mapping operations are performed sequentially.
The procedure conforms to the zerovalent case described earlier with the mapping engine
calling the extraction adapter in each step parameterized with the current RID and using
the correct associated classification core. The whole application flow can be followed
conceptually in figure 6.3 on page 115.

Step 5: Post-Processing or Applying the Fact Oblivion Strategy When the qualitative
mapping has been performed by the Classification_Control, as shown in figure 6.2 on
page 113, the final task which is initiated in the scope of the qualitative abstraction is the
oblivion of old atomic facts, outlined in section 5.4.2 on page 105. As already mentioned
earlier, the Messenger_Fluent takes charge of this task rather than a distinct, dedicated
component in the SCD framework. From a design point of view, this decision seems
like it spoils the otherwise clear task assignment of other modules in the SCD framework.
However from a pragmatic perspective, the Messenger_Fluent is the module of choice due
to the fact that all fact-related interaction with the qualitative knowledge base is handled
by the messenger. Thus each time it is ordered to issue a new atomic fact with a closed
validity interval that is therefore subject to aging to the knowledge base, the messenger
stores the associated fact representation in an internal storage structure (cf. figure 6.2 on
page 113). When the Messenger_Fluent is then called to perform fact oblivion, it can
easily resort to this storage and retract those atomic facts from the knowledge base which
a.) have been entered by mapping engines that registered explicitly for consideration
in the oblivion process on startup and b.) whose validity has expired a certain amount
of time ago. The concrete amount of time during which atomic facts remains relevant
after the closure of their associated validity interval is specified explicitly by the mapping
engine upon registration for fact oblivion. It is subject to individual customization via the
configuration (cf. figure A.1 on page 165).

With the consolidation of the pool of atomic facts stored in the qualitative knowledge
base, the process of qualitative abstraction is concluded for the momentary analysis cycle.
Subsequent analysis steps, i.e. the detection of extensive motion incidences described
in the following section, build exclusively upon the qualitative data base that has been
maintained so far, rather than pursuing a hybrid strategy which also exploits qualitative
low-level data.

6.2.2 Detection of Extensive Motion Incidences

As shown in the coarse structural overview presented in figure 6.1 on page 110, the
detection of extensive motion incidences based upon the momentary contents of the
qualitative knowledge base is performed by the Recognition_Control module. It is called
by the superordinate Mapper_SCD, once the qualitative abstraction is completed. The
internal composition of the Recognition_Control is shown conceptually in figure 6.4 on
the following page. With regard to the concrete implementation, the detection comprises
two distinct sub-tasks that are handled in succession. First, the compilation of derived
atomic facts (cf. section 5.1.2 on page 63) and second, the detection of concrete events,
actions and action sequences.

The compilation of the derived atomic facts is handled by the Recognition_Control
rather than the Classification_Control due to the fact that these facts are not acquired
immediatly as a consequence of qualitative mapping. Their compilation requires the incre-
mental tracking of the evolution of the dynamic scene described by sets of fundamental
atomic facts which is conceptually similar to the detection of high-level motion incidences.

Essentially, the Recognition_Control is a control module that manages a set of detectors
that are called in sequence. Thereby, each detector is a self-contained unit that bears
responsibility for the detection of a.) derived atomic facts (cf. figure 6.4, step (1)) or b.)

http://www.robocup.org
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Figure 6.4: Schematic overview of the Recognition_Control module which is responsible
for the detection of extensive motion incidences.

motion incidences that are associated with a distinct set motion classes (cf. figure 6.4,
steps (2)-(4)). Two distinct types of detectors have been implemented.

The first type constitutes an integrated detection unit where both the detection man-
agement and the detection logic are implemented jointly as a conventional C++ class.
Concrete detectors of this type are derived from a common base class that already pro-
vides the means to issue detection results to the qualitative knowledge base, using an
own instance of the Messenger Fluent that has already been introduced in the description
of the qualitative abstraction. In the implementation of concrete detectors of this inte-
grated type, the developer is given complete freedom of choice as to the applied detection
methodology. Qualitative input data that is required for the detection must be retrieved
from the knowledge base using direct Prolog queries23. The integrated approach has been
used exclusively for a single detector that is responsible for the incremental compilation of
all derived atomic facts referring to the ball control predicates specified in section 5.1.2.

The second type of detector, employed for the detection of all extensive motion inci-
dences, differs from the integrated variant as it constitutes a compound detection unit
which relies on a generic detection management implemented as a general-purpose C++
wrapper class on the one hand and an individual, externalized detection core realized as
a Prolog rule on the other hand.

This prolog rule can be thought of a short program that can perform spatio-temporal
pattern matching of the facts/motion incidences stored in the qualitative knowledge base
against an entailed motion pattern that is the direct implementation of a formal pat-
tern specification as introduced in section 5.3, pp.89. Successfully detected motion
incidences that are not yet contained in the knowledge base are asserted immediatly
and the detection yield is returned as result of the Prolog query. Examples for such
externalized detection cores are shown in figure 6.6 on page 121 (→ detection of ball
transfer occurrences) and figure 6.7 (→ detection of pass occurrences). These figures
constitute excerpts from the actual Prolog implementation. Both have been overlaid
23 That is, so far no specialized extraction interface for qualitative facts has been implemented.
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Figure 6.5: Alternative schematic overview of the course of action of a detection cycle
performed by the Recognition_Control. It it to show the hierarchical detection style.
Starting with the assessment of new derived atomic facts the detection proceeds to ex-
tensive motion incidences thereby working towards top-level incidences. Within the same
detection cycle intermediate results collected hitherto can already provide the basis for
the detection of superordinate motion incidences.

with additional information such that it is easy distinct the rules’ respective goal24 used
in the query, the control code with the standardized knowledge base interaction and
most importantly the contained motion pattern. The ball transfer and pass were cho-
sen as paradigmatic examples as they illustrate the distinct query styles that are used
for normal detection (→ occurring_after(bound, . . .)) and specialization detection (→
occurring_at(start, end, . . .)). In a specialization query the exact temporal extent of the
potential new incidence is already preset while in a normal query, only the end of the last
detected incidence is specified, an information which can then be used to optimize the
internal pattern matching using expert knowledge about the temporal entanglement of
motion incidences of the considered motion class25.

The particular implementations of the motion patterns in Prolog deserve extra attention
as they constitute a strong reason why Prolog was chosen as for the implementation of
the pattern matching process in the first place. A direct comparison of specification
and implementation (e.g. figure 6.6 on page 121 ↔ motion pattern (5.11), p.96) is
instructive and points up that the formalization translates virtually unchanged directly
to executable code, thus rendering the compound approach an excellent base for rapid
prototype development of detectors responsible for new/additional motion classes. For
the scope of this thesis, Prolog detection cores have been implemented for each of the
event and action classes specified in section 5.3.

Focusing on the course of action of a single detection cycle conducted by the Recogni-
tion_Control, the set of both integrated and compound detectors is called in ascending
order of complexity of the motion class associated with the particular detector, seizing the
proposal from section 5.4.1, pp.104 (cf. figure 6.5). This call order is employed as it is a

24 The term ’goal’ or ’head’ is a synonym for the implication of the Prolog rule.
25 For instance, for ball transfers in soccer it holds that concrete occurrences can only happen in sequence.

This constraint is consequently enforced in the motion pattern in figure 6.6 on page 121.
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prerequisite for the adherence to the guided detection strategy proposed in section 5.4.3,
pp.106. Even though an automatic determination of the call order based on the con-
stituents contained in the particular motion pattern implementations is conceivable and
a feasible addition in future revisions of the Recognition_Control, for the time being the
order of calls is determined by hand.

In section 5.4.3, a concept of guided detection has been proposed which allows for a
conditional execution of the respective detection attempts by the specialized detectors,
based on whether or not the detection yield obtained so far in the momentary detection
cycle provides sufficient hints for a detection success. The concrete implementation of
this concept is based upon two pillars. First, a data structure, referred to as the global
detection yield, managed by the Recognition_Control where each detector that has been
successful in digging up new derived facts/motion incidences in the momentary detection
cycle can post its local detection yield. Second, specialized triggers which can be assigned
to each detector. These triggers can be fed with the hitherto compiled global detection
yield and based upon its contents can decide whether the detector should actually attempt
finding new motion incidences or skip the detection cycle. They are provided by a special
trigger factory and can be built generically based on the individual configuration of a
certain detector. The configuration also defines which of the two available detection
strategies, that is either the brute force or the guided approach are preset globally and
thus relayed by the Recognition_Control to the particular detectors in each call. If the
guided detection strategy is set globally, the subset of detectors, no matter if of integrated
or compound flavor, that supports a selective detection behavior, adheres to the global
hint. Thus, it is possible to employ detectors with dumb/selective call behavior side by
side.

Once the whole set of detectors that is managed by the Recognition_Control has been
called, it is guaranteed that all extensive motion incidences that could possibly be de-
tected up to the momentary present have indeed been detected and stored in qualitative
knowledge base. The analysis cycle is completed.

6.3 Implemented Use Case Scenarios

For the scope of this thesis, the SCD module that has been outlined in the preceding
section has been paradigmatically employed in the following use case scenarios: First, the
SCD module was embedded in the SCD Coach agent, which actively participates in the
simulation of soccer matches in the RoboCup 3D Soccer Server. Second, the SCD module
was embedded in the SCD Simulator, a standalone software application.

6.3.1 SCD Deployment in RoboCup 3D Soccer Simulation

It was stated as a primary goal of this thesis that the spatio-temporal analysis of dynamic
scenes developed herein must be suitable for real-time deployment. In the application
domain at hand, this means essentially it must be feasible for an agent participating in
the considered simulated soccer matches to embed and conduct the analysis module. As
for the evaluation of this thesis, a special variant of the RoboCup 3D Soccer Server created
by the Iranian UTUtd team was used [ABD+06], two integration scenarios were possible:
a.) integration of the SCD module in the common soccer agents and b.) integration in a
coach agent which was introduced as part of the UTUtd 3D Soccer Server.

Due to the fact, that the SCD framework was to be evaluated first using a perfect,
i.e. noise-free vision, and it was not yet clear which fraction of the available reason-act
cycles would be consumed by the additional analysis functionality, the choice fell upon
the coach agent. For this purpose, the existing Virtual Werder 3D coach/monitor hybrid,
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Figure 6.6: Implementation of the Prolog detection core for the ball_transfer motion
class. Via the _bound variable and suitable additions in the motion pattern, the pattern
matching process is streamlined.

Figure 6.7: Implementation of the Prolog detection core for the motion classes of both
failed and successful passes. The fact that a successful pass is a direct specialization of a
ball transfer is reflected in the detection management code.
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developed originally by the author to conduct reinforcement learning scenarios in the Robo-
Cup 3D Soccer Simulation, has been adapted. Seizing the design principles established
by the Virtual Werder 3D team in the development of its extensive code base [LRS+06],
the SCD module was integrated as an additional world state mapper that is called in
succession to existing mappers responsible for the compilation and maintainance of the
quantitative world model. The abstract interface defined by the SCD framework for the
access to quantitative input data was implemented as a new extractor that interfaces with
the coach knowledge base. The methodology used for the integration in the coach agent
is immediatly applicable for the normal Virtual Werder 3D player agents and demonstrates
the simplicity of an integration of the SCD module into an existing code base.

As a side-node, it should be mentioned that the design of the SCD framework outlined in
the preceding sections enabled the following development feature with respect to the SCD
Coach. Once the binary of the SCD Coach with the embedded SCD module is available,
seizing the means of compound detectors described in section 6.2.2, existing detectors
can be modified and new ones created without recompilation of the coach binary. While
a modification of existing detectors is possible by a modification of the associated Prolog
rule, the addition of new detectors also requires an entry in the XML configuration file
which can be compiled in about a minute. In both cases, the modified analysis behavior is
available in the next employment of the SCD Coach in the RoboCup 3D Soccer Simulation
environment.

6.3.2 SCD Deployment in Standalone Analysis

The previous section broached the issue of the embedding of the SCD module into an
agent that resides inside the RoboCup 3D Soccer Simulation and which is thereby enabled
to perform a LiveSCD analysis of the momentary game while also pursuing its original
duties defined by its role association.

However, both the development process of the SCD framework and a large part of the
evaluation26 called for the possibility to perform repeated analysis runs based on a single,
fixed simulated soccer match.

This reproducibility requirement was accommodated with the implementation of game-
recording capabilities for both the Virtual Werder 3D players and the SCD Coach. Both
have received mappers that write the agents’ respective perception of the momentary
world state to log files using a common format based on Lisp-like s-expressions which is
further detailed in section A.3 on page 165. The logs that are by and by compiled that
way during the simulation of soccer matches conducted by the RoboCup 3D Soccer Server
can subsequently be used as input for a standalone application, the SCD Simulator. This
application can parse a log file at a time into an internal memory structure. It integrates
the SCD module and invokes its analysis once for each recorded agent perception. Again,
the abstract input interface defined by the SCD framework for access to quantitative
input data has been implemented as a new extractor which interfaces with the internal
representation of the agent’s conserved momentary worldstate perception.

Thus, using the SCD Simulator it is possible to analyze a certain fixed game repeatedly.
It is also possible to compare the analysis results based upon a constrained, noisy percep-
tion (player agents) with the noise-free perception of the SCD Coach without having to
embed the SCD module directly in the Virtual Werder 3D agents.

26 namely the fraction centered around the evaluation of performance variations under changing param-
eterizations of employed real-time optimizations (cf. section 7.4 on page 137)
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7
Evaluation

The seventh chapter of this thesis is devoted to the evaluation of the approach for spatio-
temporal analysis which has been outlined in chapter 5 and implemented in the concrete
software system introduced in chapter 6. The evaluation is structured as follows:

First, section 7.1 briefly describes the general setup of the test environment. In suc-
cession, section 7.2 evaluates the recognition quality with respect to precision and recall1
of a subset of extensive motion incidences, both events and actions, for which motion
patterns have been developed throughout section 5.3 in the concept chapter. Primarily,
recorded world states originating from the SCD Coach (cf. section 6.3.1) are used as input
for the analysis. However, in a comparative analysis, it is also evaluated to what extend
the implemented analysis system can already handle degraded input from regular Virtual
Werder 3D agents.

As the real-time efficiency is considered a crucial factor for a feasible application of the
implemented system during regular games of the RoboCup 3D Soccer Simulation League,
rather than as a post-processing tool, the following sections evaluate the runtime perfor-
mance of the developed system within the RoboCup 3D Soccer Simulator (section 7.3)
and thus the targeted simulation environment with respect to both consumed simulation
time within a reason-act cycle and consumed real time for qualitative abstraction and
detection of extensive motion incidences respectively. Section 7.4 evaluates the variation
of the runtime performance caused by several optimizations such as the application of a
guided detection strategy (cf. section 5.4.3 on page 106), the applied fact assembly strat-
egy (cf. section 5.1.5 on page 78) and the oblivion of aged atomic facts (cf. section 5.4.1
on page 104).

The chapter is concluded in section 7.5 with a discussion of the results compiled through-
out the evaluation.

7.1 General Setup of the Test Environment

The evaluation for this thesis has been performed on a single simulation machine located
in the Virtual Werder Lab with the following specification: 32bit Intel Pentium 4 CPU
1 The definition for the terms precision and recall for this thesis can be found in definition 7.1 on

page 125.
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(1 Core, Hyperthreading deactivated) with 3.0 GHz clock speed and 2GB RAM. The
system runs Ubuntu Linux (7.04, Feisty Fawn) with a modified Ubuntu-Kernel2. For
the generation of test games an extended version of the standard RoboCup 3D Soccer
Server 0.5.3, developed by the Iranian UTUtd 3D Soccer Simulation Team3 for the 3D
Development Competition at the RoboCup 2006 in Bremen [ABD+06], referred to as
UTUtd server, was used. This server featured amongst other improvements support for
coach agents with precise, undisturbed vision. It was modified by the author for use in
this thesis such that team binaries from past RoboCup events (RoboCup 2006 and China
Open ’06) can be deployed unchanged as adversaries for the Virtual Werder team.

A series of 15 complete test games was run with the latest Virtual Werder 3D sphere
team competing three times respectively against five of the top teams of the RoboCup
3D Soccer Simulation League, namely Fantasia4, SEU5, WrightEagle6, FC Portugal7 and
Aeolus. The games were conducted under the same conditions that are accepted standard
for national and international RoboCup competitions with respect to the configuration of
the simulator. However, due to limited resources all games were conducted in a non-
distributed setting on the aforementioned test machine running the server and both agent
teams. Each game was attended by the SCD Coach (cf. section 6.3.1 on page 120)
compiled for this thesis.

Both the players of the Virtual Werder team as well as the SCD Coach compiled log
files which encode the perception of the game in a common format, suitable as input
data for the offline application of the analysis system developed in this thesis via the
dedicated log-based SCD Simulator. Moreover the coach performed online analyses for
all 15 conducted test games, thereby compiling performance statistics to be evaluated in
section 7.3.

The set of fifteen test games is included on the DVD that comes along with this thesis
and constitutes the basis for all evaluation steps described hereafter.

7.2 Detection Quality: Precision & Recall

As outlined in the introduction, the issue of the first section of the thesis evaluation is the
practical test of the implemented analysis system with regard to the detection quality for
extensive motion incidences under real-world conditions. That is, the system is applied
in the context of regular, RoboCup tournament compliant 3D Soccer League matches as
geared up in the preparation of the evaluation rather than in restricted, well-tuned lab
scenarios. Thus, a demand specified in section 3.2.2 on page 19 is accommodated for.

7.2.1 Description of the Test Setup

In the given context the term quality refers to two performance criteria borrowed from
the field of information retrieval (IR), namely precision and recall [RN95, p.840–844]. In
using these key measures the evaluation at hand is geared to its equivalents in related
research such as in [Wen03, pp.149] and [Mie04a, p.133]. The semantic of both precision
and recall is defined as follows for the scope of this thesis:

2 to be precise, a 2.6.20-based kernel with additional kernel modules (perfctr performance counter)
required for the operation of the RoboCup 3D Soccer Server

3 Information about the UTUtd team can be found on a dedicated web site:
http://www.fos.ut.ac.ir/robocup/ (visited:02/09/2007)

4 Dalian University of Technology, China. 1strank China Open 2006
5 Southeast University, China. 2ndrank, China Open 2006
6 University of Science and Technology of China, China.
7 University of Aveiro/University of Porto, Portugal.
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Definition 7.1 (Precision and Recall) Let PSystem = A′Sytem ∪E′System denote the set of au-
tomatically detected motion incidences and let PTruth = A′Truth ∪E′Truth denote the ground
truth set of actually occurred motion incidences.
Then, the precision measure mprec is defined as the proportion:
mprec =| PSystem ∩s PTruth | / | PSystem |.
The recall measure mrec is defined as the proportion:
mrec =| PSystem ∩s PTruth | / | PTruth |. "

Before actual evaluation results are presented, it is compulsory to clarify the correla-
tion of both PSystem and PTruth with the maximum detection yield Pmax = E′ ∪A′ and,
consequently the way in which ground truth detection results are acquired.

To the best knowledge of the author at the time of writing, no immediatly comparative
approach for the real-time spatio-temporal analysis of dynamic scenes has yet been de-
veloped and published for the considered application domain of the RoboCup 3D Soccer
Simulation League as documented in the survey of related work in chapter 4 on page 29.
Thus, no eligible candidate for a direct comparison of detection results is at hand. As a
consequence thereof, the implemented analysis is tested against a manually crafted ground
truth, rather than a competing system/approach.

The ground truth is thereby obtained as follows: A human spectator tracks a subset
of the available test games mentioned in the previous section and in the process tries
and detects incidences for a subset of the motion classes whose automatic detection
has been enabled in the implemented analysis system via associated motion patterns. A
compulsory prerequisite for an unbiased manual detection is the ignorance of the automatic
detection results. The results of a manual detection qualify as ground truth under the
given circumstances for two reasons: First, the motion patterns that are the backbone of
the automatic detection of motion incidences are the result of a knowledge engineering
process where the human expert tries and formalizes his intuitive understanding of the
composition of motion classes. Even though this process is done thoroughly, it is expected
that only a subset of the engineer’s expertise can be captured, especially with respect to
exceptions from the norm. Second, the standard 3D Soccer Monitor bundled with the
server features a sufficiently high frequency of vision updates such that in conclusion
the manual detection should be a superset of those motion incidences detectable by the
implemented analysis system.

As it is difficult for a human to unambiguously detect all the motion classes known to the
analysis system, certain restrictions need to be introduced for the sake of comparability of
the respective detection results. Thus, the following quality assessment will concentrate on
the detection of ball reception (cf. pattern (5.4)), kicks of the ball (cf. patterns (5.1) (5.2)
(5.3)), the ball transfers (cf. patterns (5.11) (5.12)) and their respective specializations
(cf. patterns (5.14) (5.15) (5.16)).

Concrete incidences of the associated action classes in E∪A constitute the reduced
incidence sets PSystem and PHuman respectively. The larger part of the motion classes
for which incidences are to be detected are recognized with an expressive diversification
such as height and direction for the kick event. These diversification attributes are not
considered in the evaluation as they are rather difficult to compile by a human spectator
provided the standard 3D Log Monitor8. Rather the evaluation concentrates on the
detection of the basis concepts9.

8 The 3D Log Monitor, referred to as rcssmonitor-lite, is distributed routinely with the RoboCup 3D
Soccer Server both in the standard server and the derived UTUtd server used for this thesis. No
functional modifications have been made on this piece of standard software.

9 Concommittant testing during the development phase of the detection aspect of the SCD analysis
showed that once the basic incidences are detected properly, the association of the diversification
arguments works as expected as well.
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[SIM][sim:32679][game:322.774]
asserta(event(receive(fcportugal_11),32678,32679)).
asserta(action(ball_transfer(fcportugal_9,fcportugal_11,southEast,...),32358,32679)).
asserta(action(pass(fcportugal_9,fcportugal_11,steep_left,...,success),32358,32679)).

[SIM][sim:32899][game:322.974]
asserta(event(retreat(fcportugal_11,ball),32699,32700)).

[SIM][sim:32899][game:324.976]
asserta(event(receive(fcportugal_11),32898,32899)).
asserta(action(ball_taming(fcportugal_11),32678,32899)).

[SIM][sim:32959][game:325.576]
asserta(event(kick(fcportugal_11,south,even,ex),32939,32959)).

[SIM][sim:33059][game:326.577]
asserta(event(receive(fcportugal_11),33058,33059)).
asserta(action(ball_transfer(fcportugal_11,fcportugal_11,south,...),32939,33059)).
asserta(action(self_assist(fcportugal_11,forward),32939,33059)).

[SIM][sim:33099][game:326.978]
asserta(event(kick(fcportugal_11,south,even,ex),33079,33099)).
asserta(action(dribble_atom(fcportugal_11,forward,success),32939,33079)).
asserta(action(dribbling(fcportugal_11,forward,success),32939,33079)).

[SIM][sim:33239][game:328.379]
asserta(event(receive(fcportugal_11),33238,33239)).
asserta(action(ball_transfer(fcportugal_11,fcportugal_11,south,...),33079,33239)).
asserta(action(self_assist(fcportugal_11,forward),33079,33239)).

[SIM][sim:33299][game:328.98]
asserta(event(kick(fcportugal_11,south,even,ex),33259,33299)).
asserta(action(dribble_atom(fcportugal_11,forward,success),33079,33259)).
retract(action(dribbling(fcportugal_11,forward,success),32939,33079)).

asserta(action(dribbling(fcportugal_11,forward,success),32939,33259)).
[SIM][sim:33319][game:329.18]

asserta(event(receive(fcportugal_10),33318,33319)).
asserta(action(ball_transfer(fcportugal_11,fcportugal_10,south,...),33259,33319)).
asserta(action(pass(fcportugal_11,fcportugal_10,forward,...,success),33259,33319)).

Figure 7.1: Excerpt from the detection output from the match Virtual Werder 3D vs.
FC Portugal which documents the successful detection of incidences for ball_taming,
extended dribbling, self_assists and a successful passes. The dribble detection is of special
interest as the incremental lengthening of an ongoing dribble sequence is demonstrated
to work successfully (cf. section 5.2.2 on page 85).

Ball control events that indicate the start of a struggle for ball control, the changing
or the ending thereof are neglected in the evaluation, even though they are all fully
implemented in the analysis system. This is due to the fact that the latter class of motion
incidences are to a larger degree subject to individual interpretation such that the results
from two distinct detection systems cannot be compared easily as varying interpretations
are not necessarily indicators of failure but may rather qualify as alternative observations
of the same statement of affairs in a dynamically evolving soccer scene.

7.2.2 Detection Quality based on Precise Worldstate Perception

The first part of the concrete quality assessment is based on the precise worldstate data
provided by the SCD Coach which is complete in the perception of all movable objects
in the simulation environment and free of server-induced vision noisification. Successive
worldstate updates are available every 20 sim-steps (corresponding to 200ms of simulated
temporal progress in the physical simulation).

Two half times played against distinct teams in two games of the above mentioned
evaluation test series are exploited. First, the second half time in the second match Virtual
Werder 3D vs. FC Portugal. Second, the first half time of the first match Virtual Werder
3D vs. SEU. Both adversary teams are among the top RoboCup 3D Soccer Simulation
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Motion Class Type #PSystem #PTruth #∩ mprec mrec

Virtual Werder 3D vs. FC Portugal (Game 1, 1stHalf) 1500 analysis cycles
kick event 62 67 62 1.0 0.925
collective kick event 4 3 2 0.5 0.667
receive event 78 76 76 0.974 1.0
ball_transfer action 59 65 57 0.966 0.877
pass (success) action 17 19 16 0.941 0.842
pass (failure) action 23 28 23 1.0 0.821
self_assist action 18 18 18 1.0 1.0
Virtual Werder 3D vs. SEU (Game 2, 2ndHalf) 1500 analysis cycles
kick event 63 71 63 1 0.887
collective kick event 1 1 1 1.0 1.0
receive event 83 83 79 0.951 0.951
ball_transfer action 60 69 57 0.95 0.826
pass (success) action 36 41 36 1.0 0.878
pass (failure) action 16 20 14 0.875 0.7
self_assist action 8 8 7 0.875 0.875
Accumulated Results (Corresponds to Full Game) 3000 analysis cycles
kick event 125 138 125 1.0 0.905
collective kick event 5 4 3 0.6 0.75
receive event 161 159 155 0.963 0.974
ball_transfer action 119 134 114 0.957 0.850
pass (success) action 53 60 52 0.981 0.866
pass (failure) action 39 48 37 0.948 0.771
self_assist action 26 26 25 0.961 0.961
header notation: mprec: precision, mrec: recall, #Pxy: detections by ’xy’, #∩: mutual detections

Table 7.1: Evaluation of the precision and recall key measures for two distinct half times
of matches Virtual Werder 3D vs. FC Portugal and SEU respectively for a selected subset
of implemented event/action classes. Accumulated results are presented as well.

League teams10. FC Portugal won the RoboCup championships in 200611 and the Robo-
Cup German Open 200712. SEU reached rank 3 in the RoboCup championships 2006
and was runner-up in the RoboCup China Open 200613. Thus, the choice of adversary
teams set value to the expected dexterities such that games with high quality standard
are considered.

The automated analysis whose results are presented in a condensed form in table 7.1
was performed offline in the SCD Simulator (cf. section 6.3.2 on page 122) based on the
recorded game observations compiled by the SCD Coach during the initial simulation of the
particular games14. An excerpt of the output that was generated by the analysis is shown in
figure 7.1 on the preceding page. The remainder of this section is structured such that the
cumulative detection results are considered which are expressed in the respective precision
and recall key measures. Subsequently, limitations of the implemented analysis system
are critically discussed and hints are presented that point at possible solutions/mitigation
of the observed problems.

In order to begin the interpretation of the results condensed in table 7.1 the recall
key measures mrec are considered first. As definition 7.1 on page 125 states, the recall
10 with the distinction that this statement of affairs refers to the classic 3D Soccer Simulation with

sphere-based agents, that has been used until spring/summer 2007
11 A dedicated web site is available at: http://www.robocup2006.org/start?lang=en (visited:17/9/2007)
12 A dedicated web site is available at: http://www.robocup-german-open.de/en (visited:17/9/2007)
13 A dedicated web site is available at: http://ai.ustc.edu.cn/rco/rco06/ (visited:17/9/2007)
14 Due to the fact, that online and offline analysis build upon the exactly same input data and thus yield

the same results, this course of action is justified
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Action Class Analysis Miene (2D Sim) Implemented Analysis (3D Sim)
mprec mrec mprec mrec

pass (success) 0.955 0.933 0.981 0.866
pass (failure) 0.898 0.928 0.948 0.771
self_assist 1.000 0.955 0.961 0.961
cumulative/∆ 0.938/– 0.932/– 0.963/+0.025 0.866/-0.066

Table 7.2: Comparison of detection quality for selected action incidences.

characterizes the ability of the analysis system to detect the considered motion incidences
that ’actually occur’ in the soccer matches15. Considering the results for the match Virtual
Werder 3D vs. FC Portugal, the recall values for all kick and reception incidences are better
than 90% with the exception of the collective kick which occurred too infrequent such that
the recall value is considered too weak in its significance. In direct comparison, the kick
detection (mrec = 0.925) does not perform as well as the reception detection (mrec = 1.0)
which is due to the higher complexity of the kick patterns for the standard and volley kick
introduced in section 5.3.1. In the game against the SEU team both the kick detection
(mrec = 0.887) and the reception detection (mrec = 0.951) lie below their equivalents in
the game against the FC Portugal.

The visual inspection of both matches that was performed for the compilation of the
ground truth data offers an explanation. The style of play that is favored by the SEU team
is highly dynamic and features a tendency towards immediate forwarding of the ball over
multiple stations during the build-up of the offensive game. In particular, an airborne ball
can be forwarded volley without touching the ground and with the agent being barely in
ball contact. This rapid style of play, adapted by other teams such as WrightEagle as well,
is more difficult to capture by the implemented kick patterns such that misclassifications
(kick interpreted as deflection/retreat from ball) and complete failure of detection occur
with increased frequency. However, even under those circumstances the detection of the
considered event patterns yields acceptable if not excellent results. Since the kick patterns
feature a comparatively high complexity compared to those patterns exempted from direct
evaluation, it is expected that acceptable results can be achieved for those as well.

With respect to the action patterns related to the transfer of the ball the results, the
recall values range between 82.1% (failed passes) and 100.0% (self assists) for the match
against FC Portugal and between 70.0% (failed passes) and 87.8% (successful passes) for
the match against SEU. So, in general a recall value of more than 80% is achieved on
average for the considered action patterns. The lower recall compared to that achieved
for the considered subordinated events is thereby due to the hierarchical layout of the
motion patterns which induces a direct dependency16 of detection quality for high-level
actions from its equivalent for subordinated events. For instance, the misclassification of
a kick event as a deflection of the ball necessarily prohibits the detection of the resulting
ball transfer (and consequently its particular specialization) once the free ball is received
again. Concluding the evaluation of the recall results, a loose17 comparison with similar
results acquired for the analysis approach by Miene in [Mie04a, p.133] in the RoboCup
2D Soccer Simulation League in table 7.2 documents that the recall performance of the
analysis at hand is only slightly inferior (6.6%) and can thus still be judged as competitive.

In succession, the precision key measures are considered. As specified in definition 7.1
on page 125, the precision characterizes the extent to which the analysis system yields
true results with respect to the ground truth and does not imagine false motion incidences.
The data in table 7.1 states that the performance of the analysis with respect to precision
15 where the manually crafted ground truth acts as the reference measure
16 Consider the specified action patterns in section 5.3.2 on page 95
17 Loose in the sense that the two RoboCup Soccer Simulation Leagues each have their own character-

istics such that a comparison can only yield hints rather than hard data.
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Figure 7.2: Example Situation which illustrates a premature ball transfer detection in a
match Virtual Werder 3D vs. SEU

is notably better than the associated recall with results between 94.1% and 100% for the
match against FC Portugal18 and between 87.5% and 100% for the match against SEU.
Considering the cumulative recall in comparison with the neighbored approach by Miene,
table 7.2 shows that the results that could be achieved by the implemented analysis are
on par with preliminary, yet offline-only approaches. These results are encouraging as they
document that the knowledge engineering process that let to the pool of motion patterns
specified in section 5.3 succeeded in creating patterns that are robust against incorrect
positive detections. Rather, the primary shortcoming attributable to the implemented
patterns is a suboptimal coverage of the space of possible, distinct event and action
characteristics that can occur in the application domain.

It is thus expected that a thorough pattern revision based on the examination of failure
situations and a more involved knowledge engineering process can mitigate a notable
fraction of encountered mishaps in the detection of motion incidences. Figure 7.2 provides
a series of snapshots from the match Virtual Werder 3D vs. SEU which paradigmatically
illustrates the misclassification of a ball transfer. At the beginning of the sequence the
ball is kicked by Virtual Werder’s player 5 (vw5) and approaches both SEU’s player 5
(seu5) and vw10. Once the ball enters the influence sphere of vw10 with only moderate
remaining speed a premature detection of a reception incidence by vw5 occurs which
immediatly leads to the dependent detection of a ball transfer and thus a successful
pass between vw5 and vw10 in the same analysis cycle. However the situation continues

18 the value for the collective kick is not considered due to a lack of significance
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and it is rendered obvious that the ball only passes the influence sphere of vw10 without
physical interaction an continues rolling towards seu2, the true ball recipient. The situation
suggests, that a more observant reception pattern, as well as a pattern for ball passage
might be required and that the dependent ball transfer pattern should be modified such
that ball passages are not allowed to conclude a valid ball transfer.

However, the revision of existing and implementation of new motion patterns cannot
solve all classification problems as certain ones are a consequence of the decision to per-
form a qualitative abstraction as a basic step and consequently to perform the detection
solely based on qualitative atomic facts on the one hand and the comparatively low sam-
pling rate for the vision updates that are available to the soccer agents (20sim-steps/200ms
compared to 15 sim-steps/150ms for the monitor and thus the human spectator). Both
issues lead to a coarsening in the perception of the dynamic scene that causes misclassi-
fications.

Thus, with respect to future work it would be beneficial to perform further experiments
that are suited to verify the coarsening hypothesis. First, to increase the sampling rate of
vision messages artificially from a 20 sim-step update interval to 10 or 5 ms intervals. While
this connotes an departure from the default RoboCup 3D Soccer Simulation guidelines
such experiments are technically realizable via modifications of the SCD Coach such
that it is provided with log monitor vision updates that feature a configurable frequency.
Second, as stated in section 5.1 on page 56, the implemented qualitative abstraction is
considered of decent, but not superior quality. Optimizations in that field could improve
the expressiveness of the available atomic facts and enable the construction of more
sophisticated motion patterns.

7.2.3 Detection Quality based on Imprecise Worldstate Perception

In the previous section, the evaluation of the detection quality was based on the precise
worldstate data provided by the SCD Coach. Based here-upon, the following second part
of the quality assessment examines the extent of the degradation of analysis quality once
an imprecise worldstate perception, provided by the Virtual Werder 3D soccer agents,
substitutes the hitherto used input.

The technical manual [O+06] which is distributed with the RoboCup 3D Soccer Server
specifies the official noise parameters for the restricted agent vision perceptor which fea-
tures a 180◦ field of vision as follows: First, ”a small calibration error is added to the cam-
era position. For each axis, the error is uniformly distributed between -0.005m and 0.005m.
This error is calculated once and remains constant during the complete match” [O+06,
p.7]. Second and more important, dynamic noise normally distributed around 0.0 is added
to the polar sight of the objects on the soccer pitch: a.) a distance error: σdist = 0.0965,
b.) an angular error in the XY-plane: σxy = 0.1225 and c.) an angular latitudinal error
σlat = 0.1480. The error increases with the distance of sighted objects. As outlined in the
team documentation, the Virtual Werder 3D agents use a combination of a ball-oriented
poke-around strategy [LRS+06, p.33], integrate distinct vision messages with their current
observation of the world and use a particle filtering technique to deduct the noise produced
by the server [LRS+06, pp.22]. When noisy perception by the agent is mentioned in this
section, this consequently refers to the best possible estimation of the real state of the
world, which is maintained by the agent using the aforementioned techniques. The noise
parameters used by the server remained untouched for the evaluation due to the demands
for application in a real-world scenario put forward in section 3.2.2.

In the following, the analysis results that are achieved given both types of input are
evaluated face to face for a single half time of a fixed match Virtual Werder vs. Aeolus.
The basic evaluation methodology introduced in section 7.2.2 is applied again in order
to retain consistency. Thus, the quality variation induced by the alternate input data is
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Motion Class Type #PSystem #PTruth #∩ mprec mrec

Coach Data Virtual Werder 3D vs. Aeolus (Game 4, 1stHalf) 1500 analysis cycles
kick event 50 53 47 0.94 0.887
collective kick event 4 2 2 0.5 1.0
receive event 64 64 60 0.938 0.938
ball_transfer action 44 49 39 0.886 0.796
pass (success) action 20 21 19 0.950 0.905
pass (failure) action 20 23 17 0.850 0.739
self_assist action 5 5 3 0.600 0.600
Agent Data Virtual Werder 3D vs. Aeolus (Game 4, 1stHalf) 1500 analysis cycles
kick event 43 53 43 1.0 0.811
collective kick event 5 2 1 0.2 0.5
receive event 62 64 60 0.967 0.938
ball_transfer action 38 49 35 0.921 0.714
pass (success) action 20 21 17 0.850 0.810
pass (failure) action 13 23 13 1.000 0.565
self_assist action 6 5 5 0.833 1.000
header notation: mprec: precision, mrec: recall, #Pxy: detections by ’xy’, #∩: mutual detections

Table 7.3: Evaluation of the precision and recall key measures for the first half time of
the match Virtual Werder 3D vs. Aeolus using perceptions from the SCD Coach and a
Virtual Werder 3D player (no.6, midfielder).

expressed in terms of comparative precision and recall measurements shown in table 7.3.
The precision and recall key measures for the detection of the considered motion inci-

dences for the coach perception reside within the expectations given the results of the
previous section with the constraint that due to the characteristic of the match Virtual
Werder 3D vs. Aeolus the recall for the kick detection and as a consequence the depen-
dent ball transfer and specializations reside below the norm. However with regard to the
comparative evaluation, this can be accepted.

Considering the recall key measure for the kick and reception event incidences based on
the game perception of the Virtual Werder 3D player 6, a midfielder, table 7.3 shows that
even under noisy perception the detection quality retains a surprisingly high level with
93.8% for the reception (coach: 93.8%) and 81.1% for the standard kick (coach: 88.7%).
Thus while the recall does not degrade under agent vision, the kick recall degrades mildly
about 7.6% where a fraction of this value can be attributed to the analysis’ obviously
heightened inclination towards a detection of collective kicks. The remainder of the 7.6%
decrease in recall seems due to the missing timely recognition of ball acceleration right
at the start of a kick such that misclassifications as ball deflection and retreat from
ball occur with higher frequency. However, it can be stated that the detection of basic
event incidences features a noteworthy robustness against noise and does not become
increasingly susceptible to phantom detections. The latter is conveyed clearly via the
associated precision key measures that are on par or even better than their equivalents
under coach perception.

The above-mentioned degradation of the recall performance for standard kick incidences
under agent perception influences the recall values for the considered action incidences.
Table 7.3 lists a recall value of 71.4% (coach: 79.6%) for the general ball transfer which
corresponds to a 8.2% decrease. In the considered game the recall for the detection of
derived actions is rather unevenly distributed with a recall of only 56.5% for failed passes
(coach: 73.9%) and 81.0% for successful passes (coach: 90.5%). It is expected that this
is a particularity of the considered game and that statistically the degradation is similar
for both pass characteristics. Another interesting result could be achieved for the self
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assists where the recall (100.0%) is better than its coach equivalent (60.0%).
Without interpreting too much into the results obtained in the particular, considered

game, it remains to make a note of the fact that indeed the implemented analysis approach
can yield serviceable results when employed based upon constrained, noisy perception over
extended periods of simulated soccer matches. This holds, even though the distance of
the observing agent to the area where the relevant action occurs can naturally grow big as
the observing agent is primarily integrated into the strategic overall concept of its team
(player role, dynamic positioning strategy). So far however, the implemented analysis
system is ignorant of the observer’s distance from the focus area.

With respect to improving the detection quality once the implemented spatio-temporal
real-time analysis approach is performed by the soccer agents rather than their coach,
besides optimized preprocessing of the vision data on the agent side a possible future
development path would be a task sharing approach. As all agents of a RoboCup 3D
Soccer Simulation League team are homogeneous in their setup, it would be possible to
give each of them the ability to perform a continued LiveSCD analysis of an ongoing game.
In order to reduce computational load and exploit the agent’s communication capability
the detection of extensive motion incidences could be dispatched dynamically to the agent
which is closest to the focus area. A new observer agent could be determined every time
the agent responsible so far finds that its distance to the focused area has grown such that
it’s sight is clouded too much. In order for this dynamic dispatching scheme to work the
responsible agent would continuously need to communicate successfully detected motion
incidences such that all fellow agents can keep their own qualitative knowledge bases up
to date. If such a knowledge broadcasting can be guaranteed to work as desired given the
communication constraints imposed by the RoboCup 3D Soccer Server a distributed anal-
ysis is worth contemplation for future work. It would be interesting to investigate which
fraction of the quality degradation found in this section when the analysis is performed
by a single agent alone can be counterbalanced by a shared approach.

7.3 Real-Time Analysis in the RoboCup 3D Soccer Simulation

As mentioned in section 7.1, the SCD Coach performed a full real-time spatio-temporal
analysis of the dynamic soccer scenes at hand with its integrated LiveSCD analysis19 for
each of the fifteen matches that constitute the evaluation basis for this thesis. In the
process, statistics with regard to performance, knowledge base charging level with the
distinguishable ’fact’ types (atomic facts F′, events E′ and actions A′) and detection
throughput have been compiled on a per-pass basis for a total of 300020 analysis passes
respectively. The recorded performance data for each pass comprises the duration for the
complete spatio-temporal analysis, measured both in simulation- and real computation
time. Moreover, the distribution of consumed time between the two primary tasks of
qualitative abstraction and the detection of motion incidences is further broken down for
the real computation time.

During qualitative abstraction, the full set of nine qualitative relations p ∈ P0 ∪ P1 ∪ P2

specified in section 5.1.1 is considered in the compilation of atomic facts F′, applying the
explicit closing assembly strategy introduced in section 5.1.1 for all objects/object pairs
that reside within the focus of attention (cf. section 5.1.6). The oblivion of old atomic
facts was applied as introduced in section 5.4.1 in order to balance the size of F′ over the

19 based upon the release version XSB 3.0.1 ’Sagres’ as Prolog backend
20 Soccer agents an the coach within the RoboCup 3D Soccer Simulation receive successive vision

updates every 20 sim-steps. A regular game in the 3D Soccer Simulation League has a duration of
600 (simulated) seconds. Each discrete sim-step is associated with a real-time interval of 0.01s, 600s
correspond to 60000 sim-steps. With 20 sim-steps per reason-act cycle, this in return corresponds to
3000 analysis passes.

http://www.robocup.org
http://www.robocup.org
http://www.robocup.org
http://www.robocup.org


in the RoboCup 3D Soccer Simulation League 133

VW3D vs. Aeolus Fantasia WrightEagle SEU FC Portugal
Qualitative Abstraction
Median 1.176 1.026 1.304 1.198 1.13
Q5/Q95 0.43/1.914 0.34/1.826 0.532/2.328 0.516/2.99 0.362/2.335
Min/Max 0.137/7.227 0.131/5.544 0.167/6.137 0.18/5.181 0.122/6.553
Mean±SD 1.297±0.692 1.12±0.57 1.395±0.652 1.275±0.562 1.242±0.677
Actors/cycle 8.147±2.732 6.871±2.52 8.564±2.62 7.77±2.11 8.339±2.81
Relations/cycle 49.88±16.39 42.2±15.1 52.38±15.73 47.61±12.65 51.03±16.83
Facts in KB 653.3±194.5 588.64±165.4 719.54±180.16 687.07±169.94 644.17±221.08
Recognition of Motion Incidences
Median 0.99 0.958 1.115 1.341 1.013
Q5/Q95 0.308/1.914 0.324/1.862 0.369/2.328 0.407/2.99 0.181/2.335
Min/Max 0.11/5.505 0.110/5.412 0.11/15.093 0.111/8.0 0.107/7.793
Mean±SD 1.027±0.599 1.0±0.553 1.218±0.786 1.478±0.924 1.137±0.717
Events/game 581.0 581.0 655.3 738.0 642.0
Events/cycle 0.194±0.6 0.194±0.6 0.218±0.63 0.246±0.66 0.214±0.632
Actions/game 109.0 200.3 157.3 247.3 133.3
Actions/cycle 0.036±0.239 0.07±0.354 0.052±0.316 0.0824±0.41 0.04±0.27
Complete Spatio-Temporal Analysis (QA&DE)
Median 2.211 2.035 2.491 2.626 2.264
Q5/Q95 1.018/4.072 0.992/3.612 1.204/4.423 1.284/4.701 0.754/4.27
Min/Max 0.413/8.709 0.302/7.467 0.351/16.262 0.376/9.277 0.298/8.859
Mean±SD 2.324±0.957 2.152±0.812 2.612±1.056 2.754±1.113 2.379±1.083

Table 7.4: Evaluation of (1) Online Performance (real-time, in milliseconds) of the imple-
mented system for the analysis of dynamic soccer scenes within the RoboCup 3D Soccer
Simulator, subdivided into qualitative abstraction & recognition, as well as for both primal
tasks of the analysis combined (2) Character of qualitative abstraction and detection (for
both events and actions).

VW3D vs. Aeolus Fantasia WrightEagle SEU FC Portugal
0 SimSteps 2847.0 2919.7 2757.7 2530.0 2729.3
1 SimSteps 153.0 80.3 242.3 470.0 270.7

Table 7.5: Distribution of consumed sim-steps for the complete analysis over the course of
complete simulated soccer matches. Note that 0 sim-steps should be read as ’the analysis
could be completed in less than the duration of a complete sim-step’.

course of the simulated games.
The detection of extensive motion incidences involved a guided pattern matching against

the complete pool of specified event and action/action sequence patterns A∪E that have
been formally specified in section 5.3. Thus, seven event classes e ∈ E and seven action
classes a ∈ A ≡ Aseq ∪Aloop are detected.

Table 7.4 provides a comprehensive statistical evaluation of the recorded test data with
common location and variance key measures. The particular columns of the table refer
to games between Virtual Werder 3D and one of the five considered adversary simulation
league teams. The entries in the respective table cells constitute averages over the three
complete games per pairing.

7.3.1 Runtime Performance in the Soccer Simulator

With respect to the time consumed on average for the complete analysis of the dynamic
scenes per pass, the median computation time runs from 2.035ms to 2.626ms. This is
a first hint that the implemented analysis approach is suited for real-time use. A more
detailed picture can be acquired via a contemplation of the associated lower and upper
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Figure 7.3: Exemplary plot of the performance distribution between qualitative abstraction
and detection of extensive motion incidences over the complete course of a test match
(’Fantasia vs. VW3D’, game one of three) and a detailed excerpt of taken from the same
game.

quantile values (Q5, Q95) and the min/max values for the required computation time
within a single analysis pass. The Q95 values state that for 95% of all analysis cycles, no
more that 5ms are required for computation. While the maxima for the respective teams
are notably higher as they run between 7.467ms for the matches ’Fantasia vs. VW3D’
and 16.262ms for the matches ’WrightEagle vs. VW3D’, the associated upper quantiles
suggest that isolated outliers are responsible for the high maxima while generally speaking
the data supports the statement of affairs that the analysis is indeed real-time capable
(i.e. for all pairings of teams the median computation time is located roughly halfway
between the Q5 and Q95 quantile). The outliers-hypothesis is substantiated by figure 7.3
which shows exemplary a plot of the required computation time for the complete analysis
over the course of a single match ’Fantasia vs. VW3D’. The plot indicates that outliers as
captured in the maxima occur, yet they are extremely seldom and thus do not constrain
the general real-time aptitude of the implemented analysis as a whole.

This statement is substantiated further by additional data illustrated in table 7.5 where
the averaged distribution of consumed sim-steps for the complete analysis is listed for the
recorded test matches used in the evaluation. Given the fact that a full reason-act cycle
for agents, both the coach and soccer players, within the RoboCup 3D Soccer Simulation
League has a duration of 20 sim-steps, the consumption of at most one complete sim-step
is definite proof for the already supposed real-time aptitude of the analysis.

Moreover, the data is highly promising with regard to further utilization of the incremen-
tally compiled qualitative knowledge, as the whole analysis is fast enough to consume only
a minimum of valuable time within each successive reason-act cycle such that the applica-
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tion of further super-ordinated high-level techniques such as statistical analyses, opponent
modelling or plan recognition (cf. chapter 4 on page 29) is a valid option. Briefly put, the
approach is fast enough, not only to compile comprehensive qualitative knowledge but
also to allow dependent modules to exploit the provided knowledge as starting point.

Shifting the focus of attention back to the data captured in table 7.4 on page 133,
the fact that the standard derivation from the mean for the complete computation time
as well as for the qualitative abstraction and recognition fractions is comparatively high
(roughly one third/ one half the mean) seems conspicuous at first. However, this dis-
tinctive feature in the compiled test data can be explained as a characteristic trait of
the implemented analysis system. With respect to the qualitative abstraction, passes with
higher computational load (i.e. when the ball is moving swift such that the considered spa-
tial relations such as distance(ball, player) and sorientation(ball, player) change rapidly,
or large amounts of atomic facts are subjected to oblivion) alternate with passes of relative
calmness where the spatial relations remain largely unaltered and the fact oblivion has
only a mild effect.

Furthermore, due to the guided recognition approach (cf. section 5.4.3), the detection
fraction of the analysis is comparatively expensive in passes where sequences of exten-
sive motion incidences are detected in succession, bottom-up, building upon each other.
For instance, when a previously free ball is received by player pl1 the following chain of
successful detections may occur:

receive(pl1) → ball_trans f er(pl2,pl1,_,_,_) → pass(pl2,pl1,_,_,_, success) →
onetwo_pass(pl1,pl2).

In other passes, no motion incidences are detected at all as for example the ball is flying
or rolling freely and only a small subset of pattern matchings are attempted (viz. for
those patterns whose detection is not triggered via a preceding, successful detection of
subordinated motion incidences in the same detection pass). Figure 7.3 on the facing
page exemplary shows the oscillation of required computation time for distinct analysis
passes.

Concluding the temporal aspects of the evaluation, the respective size of the qualitative
abstraction and the detection fractions of the time used for complete analysis passes is
roughly equal with light prevalence for the qualitative abstraction. Thus, the detection
seems to be well-tuned with regard to performance efficiency. Section 7.4.2 on page 139
will investigate further the influence of the applied guided detection strategy on the de-
tection performance.

7.3.2 Characteristic Traits of the Implemented Analysis System

Besides the performance oriented data discussed so far table 7.4 on page 133 also provides
data about the modus operandi and the detection results of the implemented analysis
system which should be considered in combination with the plot in figure 7.4 on the next
page.

With respect to the qualitative abstraction, table 7.4 denotes data about the mean
number of actors inside the focus of attention, that is in the circular region with a radius
of 13m around the ball as key object (cf. section 5.1.6 on page 82), and the associated
standard derivation. The means differ slightly between 6.87 and 8.14 actors with a stan-
dard derivation coarsely located around 2.5. These differences probably mean that teams
such as Aeolus and WrightEagle employ a comparatively compact style of play where more
players are attracted to the ball compared to Fantasia. Larger numbers of actors in the
focus of attention lead to an increased amount of relations that have to be tracked in the
qualitative abstraction passes and a higher mean of atomic facts F′ in the knowledge base.
Consequently, the time consumed by the qualitative abstraction is increased as well.
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Figure 7.4: Exemplary plot of the charging Level of the Prolog knowledge base with ground
facts, events and actions/action sequences respectively over the complete course of a test
match (’Fantasia vs. VW3D’, game one of three) and the development of both numbers
of actors in the focus of attention and the resulting number of qualitative relations that
need to be tracked.

The large standard derivation from the mean for the charging level of ground facts in
the knowledge base can be explained as a consequence of the chosen implementation for
fact oblivion strategy introduced in section 5.4.1 on page 104. The upper plot in figure 7.4
illustrates that the charging level of atomic facts oscillates considerably around a slightly
increasing linear regression function f (x). Considering both plots shown in figure 7.4, the
data seems to suggest a correlation between the number of relevant scene actors within
the focus of attention (and, as a consequence, the amount of qualitative relations that
need to be tracked) and the net growth of atomic facts for over the course of a game.
Although the oblivion of old atomic facts, as introduced in section 5.4.3 on page 106, is
applied uniformly over the whole course of a game, retracting from the knowledge base
in each successive analysis pass those atomic facts whose validity expired more than 2000
sim steps in the past, the net amount of facts increases for those periods with a high
density of scene actors in focus and decreases in others. So, while a part of the oscillation
can be attributed to the alternating dynamics of the soccer game with phases of relative
calmness (ball freewheeling slowly before reception by a player) followed by phases of
rapid changes (hard kick of the ball in between a group of players), another part of the
oscillation seems to be funded in the fact that the saturation level for atomic facts is
correlated to the momentary number of scene actors in focus. Thus both the size of the
focus of attention and the age threshold for oblivion influences the balancing efforts that
have been introduced in the analysis system as real-time optimization. Section 7.4.3 on
page 141 will delve further into the influence of the age threshold on the net charging
level of atomic facts over the course of a complete soccer match. The general light net
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growth of the charging level of atomic facts towards the end of a game which is suggested
by the linear regression function f (x) in the upper plot of figure 7.4 is owing to the matter
of fact that a subset of atomic facts, namely those that relate to the play mode and the
ball control situation, are exempted from oblivion, as they are considered relevant pieces
of information in their own right.

The total number of concrete event/action incidences detected on average over the
course of a game runs from 581/109 to 738/243. The style of play of the competing
teams as well as the respective sophistication in the treatment of the ball can be considered
important factors. For instance, the SEU players handle the ball very well and favor rapid
forwarding of the ball in their offensive play which is reflected in the associated top
detection yield.

7.4 Performance Variation via Real-Time Optimization

The performance contemplation applied in the previous section referred to a single possible
configuration for the SCD analysis system developed for this thesis, which was considered
the best choice for application in a real-time scenario. This best choice assumption shall
be substantiated in the remainder of this section via a continuative contemplation where,
based on a single, fixed game chosen from the pool of fifteen available test games, namely
game one of three that the Virtual Werder 3D team played against the Fantasia, the perfor-
mance variations induced by three important conceptual choices for the implementation
of the qualitative abstraction (the fact assembly strategy) and the detection of exten-
sive motion incidences (the fact oblivion strategy and the driving detection strategy) are
investigated.

Due to the fact that the standalone SCD Simulator allows for the execution of repeated
analyses of the course of a single, fixed soccer match, encoded in an associated log file
incrementally recorded by the SCD Coach during the original simulation of the game in
the preparation of this evaluation, an immediate comparability of game analyses with
configurations that differ in a single aspect in order to evaluate the consequences of one
of the strategy choices mentioned above, is warranted. The results which are presented
in the following sections bear relevance for the analysis approach as a whole and should
be credited as indicators for the feasibility of the default configuration used in the afore-
mentioned test game series rather than as a full, statistically grounded dissection of the
surveyed features which remains subject to future work.

With regard to the performance results obtained for the implemented analysis of dynamic
scenes within the SCD Simulator, the results presented in the following sections should
not be directly compared with the results obtained on average in the target scenario
where the analysis was performed repeatedly by the SCD Coach within the RoboCup 3D
Soccer Environment. Rather, the results are upraised as immediate offline comparison
measurements only21.

7.4.1 Influence of the Fact Assembly Strategy

Due to the fact that the qualitative abstractions is the first of two primary task areas
that comprise the complete analysis of the dynamic soccer scene at hand in each analysis
pass, two possible strategies for the assembly of atomic facts, namely ’explicit closing’ and
’explicit lengthening’, that have both been conceptually introduced in section 5.1.5, p.79,
are surveyed with respect to the alteration in performance for the complete process of
qualitative abstraction over the course of a game of simulated soccer.
21 Unlike the LiveSCD analysis performed by the SCD Coach, the OfflineSCD analysis in the SCD

Simulator is based upon the release version XSB 3.1 ’Incognito’ as Prolog backend
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Figure 7.5: Performance comparison of a simulated ’explicit lengthening’ assembly strat-
egy for atomic facts with the default ’explicit closing’ assembly strategy over the course
of a fixed game.

The ’explicit closing’ assembly strategy presupposes the utilization of right-open inter-
vals I' and assumes that facts that are asserted as valid from a certain fixed time point
forward retain their validity until at a later point in time the contrary is asserted explicitly
(i.e. the validity interval for the particular fact is terminated). It is an alternative ap-
proach to fact assembly as those advocated by Miene [Mie04a] and Gehrke [Geh05] that
get by with closed intervals I‖ alone. The equivalent to a fact with a right-open validity
interval is a fact whose validity interval features the same beginning, but whose ending
always conforms to the momentary present. The potential price to be paid in utilizing
this approach is the need to explicitly and repeatedly elongate the validity interval of such
facts that retain valid in successive analysis passes22. In section 5.1.5, p.79, the assump-
tion was expressed that the latter approach might be inferior for the RoboCup 3D Soccer
Simulation application domain.

In order to perform a comparative evaluation, the behavior of the ’explicit lengthening’
assembly strategy was emulated in order to retain the functionality of the remainder of
the implemented analysis system23: Instead of abandoning the use of right-open intervals
I' completely and fully reimplementing the fact assembly for the ’explicit lengthening’
approach, atomic facts with a right-open validity interval that are found to retain their
validity for yet another qualitative abstraction pass are explicitly retracted from the knowl-
edge base and reasserted in the same form immediatly afterwards. With respect to the

22 Thus the lengthening cost are most pronounced for those facts that are most resistant to change. For
the concrete application domain of simulated soccer, consider play mode facts as an example

23 Several of the motion patterns that have been compiled in section 5.3.1 on page 90 rely on the
existence of facts f ∈ F′ with validity intervals i ∈ I'.
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Explicit Closing Explicit Lengthening
Qualitative Abstraction
Median 0.768 3.625
Q5/Q95 0.175/1.822 1.620/5.927
Min/Max 0.053/6.327 0.560/7.725
Mean±SD 0.859±0.525 3.634±1.274

Table 7.6: Evaluation of the variation in runtime performance (in milliseconds) for the
qualitative abstractions using distinct fact assembly strategies over the course of a single,
fixed soccer match. The statistical key measures presented here complement the plot in
figure 7.5 on the preceding page.

computational expenses for the interaction with the Prolog knowledge base, this course
of action is equivalent to a real explicit elongation of a closed validity interval 〈s, e〉 ∈ I‖
to 〈s, e + 1〉 which also requires both a retract and re-assertion of a certain fact.

The experimental results of the utilization of either of the above-mentioned fact assem-
bly strategies for the same game analyzed in the SCD Simulator are presented graphically
in figure 7.5 on the preceding page where the respective distribution of consumed com-
putation time is plotted over the course of the test game. In addition, table 7.6 presents
a selection of statistical key measures that summarize the qualitative abstraction perfor-
mance and thus complement the results encoded in the graph.

To start with, a visual inspection of the plotted data in figure 7.5 indicates a superior
performance of the explicit closing assembly strategy that is also reflected in the key
measures. With 0.768ms compared to 3.625ms, the median time is roughly 21% of
the explicit lengthening case. What is more, the upper Q95 quantile for explicit closing,
with a value of 1.822ms, amounts to only half the median for explicit lengthening The
lower Q5 quantile for explicit lengthening (1.620ms) is located only marginally below
the aforementioned upper Q95 quantile for explicit closing. However, the performance
degradation induced by the utilization of the explicit lengthening fact assembly strategy is
not only characterized through the statistical location parameters alone. It is also reflected
in variation parameters such as the respective size of the standard derivation and the inter-
quantile distance. Both key measures are far more pronounced in the explicit lengthening
case. The greater amount of oscillation in the performance value run is also clearly visible
in the performance graphs in figure 7.5.

Even though the general statement of affairs revealed by the evaluation was expected
in the run-up, the actual extent of the performance variation for the computation of the
qualitative abstraction came as a surprise. The assumption made by Gehrke in [Geh05,
p.138] that the explicit lengthening fact assembly strategy can yield noteworthy perfor-
mance gains has been confirmed without doubt in the given experimental setup for the
considered application domain of simulated soccer. Beyond that, it is expected that the
obtained results are conferrable to other application domains such that the explicit closing
strategy should be considered there as well.

7.4.2 Influence of Detection Strategy

While the previous section was concerned with the evaluation of an important aspect in
the process of qualitative abstraction, the current section is devoted to the evaluation of
the performance gains that can be achieved via the utilization of the guided, bottom-up
detection approach for extensive motion incidences outlined in section 5.4.3 on page 106,
compared with a brute force, bottom-up detection approach as a bottom line.

The guided detection was developed in the conceptualization done for this thesis as a
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Figure 7.6: Upper Plot: Performance comparison of a brute force motion incidence detec-
tion with the guided detection strategy proposed in the concept chapter (section 5.4.3 on
page 106) for a fixed game. Lower Plot: The performance for the qualitative abstraction
remains unaltered.

means to effectively reduce the computation time for the detection of motion incidences
such that in every successive detection pass over the course of a game, the detection of
new concrete incidences is only attempted for those equivalence classes of events e ∈ E
and actions a ∈ A ≡ Aseq ∪ Aloop where the intermediate yield produced to date in a
particular detection pass already provides ample prospects for further detection success.
In contrast, the brute force detection unalterably tries and detect new incidences for each
event or action class regardless of the momentary situation in the dynamic scene.

The experimental results of the utilization of the brute fore as well as the guided detec-
tion strategy for the same game analyzed in the SCD Simulator are presented graphically
side by side in figure 7.6. The graphs illustrate the respective distribution of consumed
computation time over the complete course of the test game. In addition, again, table 7.7
on the facing page presents complementary statistical key measures.

An initial contemplation of the results conveyed by the plotted data in figure 7.6 allows
for multiple observations. The most obvious of course is the noteworthy performance
advantage of the guided bottom-up detection over the brute force equivalent which is
reflected clearly in the key measures as well. With 0.371ms, the median computation time
for the guided detection amounts to roughly one third of the 1.117ms required for brute
force detection. Furthermore, the quantile values indicate that for 95% of all detection
passes the time consumed when applying guided detection lies below both the median
of 1.117ms and the mean of 1.189ms for the brute force case. Thus, the implemented
guided detection succeeded in achieving the desired performance gains required for real-
time aptitude of the detection approach.
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Brute Force Bottom-Up Guided Bottom-Up
Recognition of Motion Incidences
Median 1.117 0.371
Q5/Q95 0.476/2.050 0.138/1.004
Min/Max 0.191/3.033 0.079/2.528
Mean±SD 1.189±0.483 0.452±0.289

Table 7.7: Evaluation of the variation in runtime performance (in milliseconds) for the
recognition/detection of extensive motion incidences (event, actions and action sequences)
using distinct detection strategies over the course of a single, fixed soccer match. The
statistical key measures presented here complement the plot in figure 7.6 on the facing
page.

The graphs in figure 7.6 suggest that the savings in computation time are most pro-
nounced in those passes where the computation time for the guided detection are low,
that is where due to the guidance only a minor subset of detections for distinct even-
t/actions incidences are actually attempted. On the other hand, even in passes where a
comparatively large number of new motion incidences is detected the guided detection
naturally remains more efficient than its simpler sibling as it never has to try and detect
the complete set of specified event and actions classes E∪A.

The graph for the brute force strategy also reveals a trend in the development of con-
sumed detection time over the course of the game, in that the mean detection duration
increases monotonously regardless of the common oscillations in detection time induced
by the varying number of movable objects in the focus of attention (cf. section 7.3.2 on
page 135). This trend is reflected in the inclination of the linear regression function f (x)
that has been superimposed on the performance graph for the brute force strategy in
figure 7.6.

While a similar, yet less pronounced trend can be identified via g(x) for the guided de-
tection, viewed in isolation the significance of the latter slight inclination is unascertained.
However, the ascending course of f (x) suggests that, generally speaking, the detection
performance of the implemented analysis approach is contingent on the global charging
level of the Prolog knowledge base. In order to get a general idea, it is instructive re-
consider figure 7.4 on page 136 that has been compiled for the performance evaluation
in section 7.3 as that figure refers to the same game used in this evaluation section and
illustrates the growth of the knowledge base for that game that is due to a slight growth
of the number of atomic facts F′ due to exemptions in the fact oblivion strategy and the
accumulation of high level motion incidences E′ ∪A′.

The following section 7.4.3 delves deeper into the correlation between detection per-
formance and knowledge base charging level. Concluding the comparison of detection
approaches targeted in this chapter, it remains to notice that the brute force detection
is to a larger extent susceptible to the observed creeping performance degradation that
burdens the implemented analysis system to an increasing degree with longer application
terms.

7.4.3 Influence of the Fact Oblivion Strategy

The concluding paragraph of the previous section put forward the correlation between
detection performance for extensive motion incidences and the global knowledge base
charging level as subject for evaluation. Consequently, this section is concerned with
one aspect thereof in that the correlation of the atomic facts charging level (| F′ |) and
the detection performance of the implemented analysis system is evaluated more closely.
The choice of a detailed evaluation of this particular aspect of the charge/performance
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Figure 7.7: Upper Plot: Development of the knowledge base charging level for atomic
facts F′ over the course of a fixed game with four distinct parameterizations for the fact
oblivion process. The oblivion threshold of tde f

obl = 2000 sim-steps constitutes the default
configuration for fact oblivion which was used for the LiveSCD analyses performed for this
evaluation. Lower plot: The charging level for events E′ and facts A′ remains unaltered
regardless of the oblivion parameterization.

correlation is due to F′ constituting the largest fraction of asserted factual data in the
qualitative knowledge base in the analysis application scenario at hand24 (cf. table 7.4
and the charge graph in figure 7.4, both to be found in section 7.3 on page 132). The
concrete evaluation in this section is performed by means of a variation of the oblivion
strategy for atomic facts F′, introduced in section 5.4.1, pp.105.

When the oblivion of atomic facts is activated over the course of a complete game,
by and by old facts whose validity has expired before a certain oblivion threshold tobl
measured in simulation steps, are subjected to oblivion and consequently retracted from
the knowledge base. In the online analyses that have been performed by the SCD coach
during the games of the evaluation test series which constituted the foundation for the
online performance evaluation of the implemented analysis approach in section 7.3, a
default threshold of tde f

obl = 2000 sim steps was applied. For the evaluation at hand, two
more relaxed oblivion thresholds, namely t1

obl = 10000 sim steps and t2
obl = 20000 sim

steps were applied in distinct offline analyses of a fixed game performed in the SCD
Simulator. An additional analysis run was performed where the oblivion of atomic facts
was deactivated. The intermediate analysis runs with t1

obl , t2
obl were performed to obtain

data for compromise cases in between a very strict oblivion policy on the one hand and
the complete lack of an oblivion strategy to constrain the growth of the charging level of

24 comprised of about 3000 analysis passes in total, predetermined by the default duration of games in
the RoboCup 3D Soccer Simulation League
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atomic facts on the other hand.
The results of the four distinct offline analyses are summarized in two plots. First,

figure 7.7 on the facing page illustrates the development of the fact charging level for
each oblivion configuration over the complete course of a fixed, simulated soccer match.
Second, figure 7.8 on the next page illustrates the respective development of the compu-
tation time for the detection of extensive motion incidences. The common contemplation
of both graphs is to demonstrate the extent of the correlation of between knowledge base
charging level and detection performance.

However, figure 7.7 can be considered in isolation first, as it yields results as to the
effect of growing oblivion thresholds ti

ob j. The graph illustrates how the charging level of
atomic facts starts to grow monotonously as indicated by the linear regression function
f (x) immediatly after the start of the game/analysis. If the fact oblivion is deactivated,
that initial growth continues for the complete course of the game with a stable linear rate
of about 6000 asserted atomic facts per half time25 (1500 analysis passes). If the oblivion
of atomic facts is activated, the unbounded growth of the fact charging level is eventually
brought to a halt. The moment of the growth cut-off is determined by the respective
oblivion threshold. As the oblivion thresholds tde f

obl = 2000, t1
obl = 10000 and t2

obl = 2000
are measured in simulation steps, the associated analysis passes are: cde f

obl = 100, c1
obl = 500

and c2
obl = 1000. The graph illustrates how the cut-off occurs exactly after the calculated

amount of analysis passes measured from the start of operations. Once the unbounded
growth has subsided, the charging level is adjusted to retain in a narrow value range
centered around a certain mean level. This is pointed out paradigmatically for the charge
graph associated with the default oblivion threshold via the linear regression function
g(x)26. The graph also illustrates that the maximum derivation from the anticipated
mean grows with the size of the oblivion threshold. Thus, for smaller oblivion thresholds
the intended regulation effect brought about by the fact oblivion is achieved in a more
controlled, sustainable fashion. A deeper evaluation of the exact fact regulation char-
acteristics would be beneficial to substantiate with necessary statistical significance the
observations that have been made based on the single considered value run. However,
such continuative considerations are deferred to future work.

For the scope of this thesis the observations related to the knowledge base charge
alone are considered sufficient. Consequently, the evaluation continues to relate the fact
charging level with the detection performance shown in figure 7.8. The four distinct
performance graphs for the oblivion configurations discussed earlier yield informative and
in part unexpected results which provide valuable insights into the interplay of the fact
oblivion process and the concrete implementation of the motion patterns introduced in
section 5.3.

Concentrating on the results pertaining the analysis characteristics first, the performance
graph for the default oblivion threshold tde f

obl = 2000 sim-steps oscillates in a narrow value
range around a mean performance. Over the whole course of the game, the performance
does not degrade considerably. These results confirm the data acquired in section 7.3.1
on page 133.

If, on the other hand, the amount of atomic facts keeps growing linearly, unconstrained
by oblivion, as illustrated in the particular graph for the knowledge base charging levels,
the mean computation time required for each successive detection pass also features a
persistent growth. What is more, the data indicates that unlike the constant growth rate
observed for the fact charging level, the growth of mean computation time per detection

25 It is important to bear in mind, that the concrete numbers are to be understood as exemplary, both
game- and team-dependent benchmarks as they lack statistical backup. Thus, it is more important
to concentrate on the conveyed fundamental statement of affairs/trends.

26 g(x) features a light inclination due to the fact that a subset of atomic facts that refer to the ball
control state and the play mode are exempted from oblivion.
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Figure 7.8: Development of the performance for the detection of extensive motion inci-
dences over the course of a fixed game with four distinct parameterizations for the fact
oblivion process. Starting from a near-constant base performance for the complete game,
a swift performance degradation occurs as the oblivion parameterizations allow for ever
higher charging levels of atomic facts F′ as shown in figure 7.7.

accelerates over the course of the game as more and more atomic facts bloat the knowledge
base. The growth is pronounced in such a way that for the considered game after 2200
analysis passes more than 30 milliseconds are routinely required per detection pass which
is more than 10 times the computation time consumed in the initial phase of the game.
The assumption that the detection performance must suffer from unbounded growth of
the knowledge base is thus confirmed.

The performance graphs for the intermediate oblivion thresholds t1
ob j = 10000 and

t2
obl = 20000 sim-steps conform to the expectations that are based on the contemplation

of the respective graphs for the facts charging level and the performance development for
the extreme cases discussed above. Just like the amount of atomic facts gets balanced
eventually on a notably higher mean level as compared with the default oblivion case, the
performance initially degrades for a while before it stabilizes at about 3.5ms for t1

ob j and
about 9ms for t2

ob j. It is interesting that there is a notable delay of roughly 250 analysis
passes between the cut-off time points for the respective oblivion thresholds in figure 7.7
and the transition from degrading to stable detection performance in figure 7.8. At the
time of writing, the exact reason for this delay is not yet determined and thus needs to
be investigated further in order to come up with founded conclusions.

In the consideration of figure 7.8, the sudden collapse of the respective performance
graphs after 2334 analysis steps catches the reader’s eye immediatly as it does not match
with the expectation that the graphs would continue to develop in a rather monotonous
way as observed during the initial phase of the game. At first, the sudden dramatic



in the RoboCup 3D Soccer Simulation League 145

improvement of overall detection performance followed by another phase of degradation
similar to that encountered earlier and thus the forming of a sawtooth-like value run was
attributed to internal problems in the XSB Prolog backend. However, this assessment
was proven incorrect through a deeper investigation of the detection performance for each
particular employed motion pattern, both for event and action patterns.

It turned out that the observed performance degradation is a result of the growing
pool of atomic facts that have to be considered in each analysis pass, especially for those
patterns that, due to their construction, feature no special connection with the momentary
present (e.g. no constituents with right-open intervals) and whose detection is attempted
in each single analysis pass due to the lack of a suitable trigger condition. If the concrete
occurrence of such a pattern is comparatively rare over the course of the whole analysis
run, fruitless detections with ever increasing costs are performed for large number of
successive analysis passes until, eventually, a first motion incidence is detected. This
successful detection leads to a new situation in that depending on the character of the
pattern, in successive analysis passes, only asserted facts in the knowledge base that lie
beyond the time point of the most recent incidence are considered in further matchings.
This is implemented for patterns such as ball deflection (cf. section 6.2.2, p.119) and
causes a very efficient resizing of relevant facts that need to be considered in the pattern
matching immediatly in succession to each successful incidence detection. From this point
forward however, the performance degradation starts again as observed before.

Thus, the sawtooth-characteristic of the performance graphs can be explained not as an
extrinsic effect but as a consequence of a resizing of the set of relevant facts as compared
to all facts contained in the knowledge base. With these results in mind, the influence
of the implemented oblivion strategy can be assessed from a better founded perspective.
As figure 7.8 on the preceding page indicates, the oblivion of atomic facts goes along
well with the automatic resizing of the time frame for relevant pattern constituents. It
effectively causes the amount of relevant facts to dwell below a certain mean level (depen-
dent on the respective tobl) in-between successive successful detections of incidences for
particular motion patterns. Thus, particularly with the use of restrictive oblivion thresh-
olds such as the default of tde f

obl = 2000 sim-steps, the performance for the matching of
critical patterns is warranted to remain acceptably high, regardless of whether or not the
incidences associated with a certain motion pattern occur frequently or only now and then
during the course of an analysis run.

To conclude, based on the performed observations, it is rendered obvious that the
implementation of an effective oblivion strategy is crucial for the efficient utilization of
the whole analysis system, especially in an environment with hard real-time demands. Via
the configuration of the oblivion threshold parameter which determines the total amount
of atomic facts that are kept in the working memory, the system’s detection performance
is controlled immediatly. Furthermore, it is desirable only to keep a minimum of facts in
the knowledge base which is required such that the pattern matching performed in the
detection of extensive motion incidences is not corrupted due to prematurely forgotten
facts. Doing so, the real-time performance is optimized while at the same time the ability
of the detection is preserved.

With respect to the observed unbounded growth in the size of relevant atomic facts
in-between detections that is mitigated but not conceptually treated via the fact obliv-
ion strategy, the results suggest the development of a more sophisticated approach for
the resizing of the time frame for relevant pattern constituents that is not bound to the
successful detection of motion incidences such that the efficiency of the resizing is not
correlated with the frequency of incidences. A possible alternative which might be suited,
is the introduction of a fixed window size for relevant facts which is determined via ex-
pert knowledge about the characteristics of the respective motion pattern similar to the
oblivion threshold. Following this line of thought the scope of duties would be rendered
more precise as a means to globally countervail the bloating of the knowledge base with
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unserviceable qualitative low-level knowledge while the respective pattern matching pro-
cesses themselves are enabled to regulate the time frame where globally available atomic
facts bear relevance to them.

7.5 Discussion

Concluding the evaluation, the results which have been obtained throughout the chapter
are briefly summarized and discussed. The evaluation was concerned with two primary cri-
teria which determine whether or not the conceptual approach to real-time spatio-temporal
analysis of dynamic scenes in the RoboCup 3D Soccer Simulation League, outlined in
chapter 5 can be considered a success. First, the quality of the analysis results, investi-
gated in section 7.2, and second the runtime performance, investigated in section 7.3 and
section 7.4.

With regard to the analysis quality, it could be shown that both the qualitative abstrac-
tion and the detection of extensive motion incidences building upon the former foundation
yield satisfying results under precise, noise-free perception with respect to precision and
recall even though the pool of motion patterns developed in the knowledge engineering
process for this thesis and implemented for the concrete analysis system prototype achieve
only a partial covering of all conceivable motion situations that occur in the chosen appli-
cation domain. The analysis was shown to work in principle under noisy, partial perception
as well with a graceful degradation of analysis quality.

With regard to the analysis performance, the implemented analysis system was shown to
be suitable for unconstrained real-time application in the targeted application domain of
the RoboCup 3D Soccer Simulation and beyond. In fact, due to the implemented perfor-
mance optimizations, it is feasible to consider a noteworthy broadening of the detectable
motion classes via additions to the existing pool of motion patterns without compromis-
ing the real-time capability. Thus, once the revision of the pattern pool, suggested as a
solution to some of the detection deficiencies, shows the need of pattern diversification
(e.g. more kick patterns) and a more complicated inner composition of those patterns,
these changes can be integrated without fear of introducing too much inefficiency.

Concluding, the implemented analysis system seems to provide a promising basis for
future development and builds a foundation for dependent research, for instance in the
fields of intention and plan recognition.
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8
Conclusion

In the preceding chapters, an approach for a comprehensive, fundamental1 spatio-temporal
analysis of dynamic scenes with special emphasis on real-time aptitude that constitutes a
fusion of precursory research efforts and own amendments has been developed and tested
in the application domain of the RoboCup 3D Soccer Simulation League. The chapter
at hand is devoted to a critical examination and assessment of the achievements worked
out throughout this thesis (cf. section 8.1). Subsequently, possible paths for future work
both with respect to enhancements of the implemented analysis framework and follow-up
research issues are addressed (cf. section 8.2).

8.1 Critical Assessment of the Thesis Achievements & Results

In the incipient motivation of this thesis, constraints of the hitherto available RoboCup
3D Soccer Simulation League agents developed by the Virtual Werder 3D team, with
respect to their purely quantitative world model and associated knowledge base, were
pinpointed. It was argued that the existing world model was inadequate with regard to
the highly dynamic simulation environment as it did not provide the agents with the ability
both to perceive and understand extended motion incidences (events, actions and action
sequences) that are characteristic for (simulated) soccer games. Spatio-temporal analysis
of dynamic scenes was identified as a suitable means to improve the agents’ grounding
situation with an incremental compilation of a comprehensive qualitative knowledge base
that builds upon expert knowledge about the motion classes that occur in the domain of
soccer.

Subsequent to the motivation, a review of the RoboCup challenge was presented, and
it was shown to what extent the ambition to outfit software agents with a qualitative
representation of their particular task environment can be conceived as a contribution
towards artificial soccer players that equal their human archetype not only in terms of

1 The designation of the developed analysis as ’fundamental’ is meant as a discrimination as the developed
analysis functionality spans solely the detection of extensive motion incidences in dynamic scenes. That
is, the knowledge that is gathered is not yet used to derive further conclusions, using e.g. deductive or
abductive reasoning techniques.
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locomotive skills but also in terms of ’soccer IQ’2.
Afterwards, several paradigmatic scenarios from the RoboCup 3D Soccer Simulation

League were presented in order to identify the scope of qualitative concepts that should be
compiled by the analysis. Starting from these concrete examples, a catalog of requirements
was put together which defined, besides the desired target concepts to be represented in
the qualitative knowledge base, demands with regard to computational efficiency and the
ability to accept and process noisy, potentially incomplete input data.

In the subsequent chapter, a representative selection of relevant approaches to spatio-
temporal analysis was reviewed and compared with respect to immediate aptitude as
starting point for the development of an own analysis approach. Based on the results of
that review, it was decided to build upon seminal work by Miene et al. and both, render
the proposed approach suitable for unconstrained real-time deployment and at the same
time extend the expressiveness of the detectable motion incidences, enabling the support
for a detection not only of basic concepts but also concept characteristics/traits.

Consequently, the development of a vertically integrated analysis approach that com-
prises the task areas of both qualitative abstraction and the detection of a wide set of
extensive motion incidences, is among the main contributions of this thesis. From a
critical point of view, it must be restrictively noted, that the qualitative abstraction was
handled pragmatically to a large extent as it was the primary goal to obtain a pool of
qualitative atomic facts that is ’sufficient’ rather than ’optimal’ as a starting point for
the detection of extensive motion incidences. Thus, the thesis does not allege to build
upon a particularly well-grounded and cognitively appropriate qualitative abstraction. It
is therefore expected that further follow-up work in this direction is necessary and can
contribute to improved detection results.

The analysis approach has been formalized extensively, concentrating on both represen-
tational and procedural aspects. It has been fully implemented in the SCD framework
to an extent that every single conceptual building block that is outlined in the concept
chapter is reflected/implemented in the framework.

Seizing the implementation that was produced for this thesis, it was rendered possible
to perform a thorough evaluation of the developed analysis approach with regard to anal-
ysis quality and execution performance in realistic application scenarios. For the latter,
comprehensive benchmarking tests were performed which tested both the overall perfor-
mance of the SCD framework under optimized deployment conditions and performance
variations using alternating subsets of available performance optimizations.

It could be shown that the analysis yields promising results with respect to the ’precision’
and ’recall’ key measures, if it is based upon very precise quantitative input data3. In
addition, it could be shown that the analysis remains usable to an acceptable degree if
degraded input data is used that is noisy to an extent encountered in real application
scenarios in the RoboCup 3D Soccer Simulation League. Although the analysis quality
decreases under these conditions, it does so with a graceful degradation. This latter result
is promising with regard to potential follow-up research as it demonstrates for the first
time the aptitude of the fundamental analysis approach originally developed by Miene
under noisy perception, even when a.) the analysis system is not particularly adapted
for this modus operandi and b.) the perceiving agent is in part rather distant from the
momentary focus of attention due to its normal role assignment in the soccer match.

With respect to execution performance, it could be shown that the developed approach
to spatio-temporal analysis of dynamic scenes and its concrete implementation are suitable
for non-restricted real-time employment. In particular, the analysis is performed fast

2 The term ’soccer IQ’ seems to originate from the US American language area and refers to a player’s
ability to ’understand’ or ’read’ the game.

3 Worldstate perceptions obtained from the SCD Coach at a relatively low frequency with regard to the
high dynamics of the analyzed soccer scenes.
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enough that the employment of other high level approaches that exploit the maintained
comprehensive qualitative knowledge is rendered feasible.

Concluding, it can be reported that analysis results compiled via LiveSCD performed
by the SCD Coach in extensive series of test games are already successfully used as input
data for a loosely related, upcoming diploma thesis by Carsten Elfers that is concerned
with the ’Prediction of [Agent] Actions by Means of Relational Hidden Markov Models on
the Basis of a Spatio-Temporal Representation’4 [Elf07].

8.2 Paths for Future Development

Both the proposed methodology for real-time spatio-temporal analysis of dynamic scenes
and the concrete implementation in the SCD framework constitute nameable steps towards
a comprehensive solution to the thesis’ underlying research problem to ”[. . .]build a soccer
(multi-)agent system in which each robot knows it is playing soccer and understands all
important elements of the game [. . .]” [SW04, p.p.758]. However, along the way several
paths for future research and development became apparent that are considered worth
pursuing.

8.2.1 Revision of Existing Motion Patterns

To start with, the evaluation of the analysis quality in section 7.2, pp.124 suggested
that a thorough revision of the existing motion pattern specifications that were proposed
in section 5.3 is compulsory in order to achieve a better coverage of actually occurring
variations of the considered motion classes. This applies in particular for the kick events
whose correct5 detection is a critical prerequisite for the detection of dependent motion
incidences. In addition, certain motion classes that have been enumerated in the catalog
of requirements compiled for this thesis such as ’clearing of the ball’ as well as ’scoring’
have not been implemented yet. An addition of those classes, especially the ’scoring’ or
rather ’scoring attempt’ was interesting as it would have consequences for the types of
objects that are to be considered for the qualitative abstraction and detection. In addition
to movable objects (players, ball), static objects (the goal posts) would need to be taken
into account. This would necessitate on the long run the modeling of an object taxonomy
(cf. [Mie04a, pp.87]) and the integration of explicit role restrictions in the formalizations of
the motion patterns6. What is more, it would be interesting to investigate to what extent
scoring attempts can actually be formalized reliably and which additional spatial-relations
would need to be introduced.

Another extension of the existing motion pattern modeling would involve the exploitation
of the incidence region classification that is already supported by the SCD framework.
Seizing these pieces of data, it is possible to introduce additional characterizations to the
ball transfer patterns (such as ’opening pass to the wing’ or ’cross pass (into the penalty
area)’) and to extend the SCD system towards the detection of strategic plays that involve
multiple active players such as ’wing attacks’ or ’changeovers’.

In section 6.2.2, it was shown that the detection of extensive motion incidences in its
current implementation is based solely on the pool of qualitative atomic facts that have
been compiled hitherto by means of qualitative abstraction. That is, no further use is
made of the quantitative low-level input. It might be an interesting research problem to
find ways to meaningfully encode the low-level data such that at a later point in time,

4 title translated from German
5 i.e. high precision and recall values
6 For instance, a ball can be deflected by players on the soccer pitch and a goal post while on the other

hand only the former can kick or receive the ball.
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the detection of high-level concepts can actually benefit from that additional data. A
hint how such a hybrid data base may look like was in parts provided in the review of
the research by Beetz and colleagues [BBG+06, Sect. 5] who propose a segmentation of
player/ball movements into piecewise linear segments. The concept is loosely related to
qualitative motion vectors (QMVs) introduced by Musto [Mus00, pp.32]. Both formalisms
aim at a concise representation of movements (where the approach by Beetz et al. remains
basically quantitative in character) which can be used for an interpretation of movement
characteristics. For instance, in [Wen03] Wendler uses a the movement vector of pass
receivers as a distinct attribute that characterizes a particular pass instance, e.g. ’pass
into a receiver’s route’7.

8.2.2 From Handcrafted to towards Learned Motion Patterns

The occupation with the explicit modelling of soccer expert knowledge as formalized mo-
tion patterns during the knowledge engineering process, that would have to be continued
if the revision/addition of motion classes is implemented, already led to doubts whether
optimal results in the pattern design can be achieved seizing only the design skills of the
developer. In [LH04, LMVH06, Lat07], Lattner develops a methodology for ’Temporal
Pattern Mining in Dynamic Environments’ (MiTemP), that has already been tested with
sample data from the RoboCup 3D Soccer Simulation League. Using this approach it is
possible to automatically assemble motion patterns in an unsupervised learning process.
It would be interesting to investigate a.) if MiTemP is capable to come up with extensive
motion patterns that have equivalents in the pattern pool used so far and thus can pro-
vide optimized substitutions for the handcrafted patterns, b.) if MiTemP can be used to
refine existing basic motion patterns, thereby extending their coverage of actual motion
incidences, and c.) if any of the above questions can be answered positively, whether
it is feasible from a technical point of view to adapt the SCD framework such that the
patterns created by MiTemP can be integrated into externalized detection cores used by
compound detectors (cf. section 6.2.2). If a successful integration could be achieved, it
was possible to detect concrete incidences of these newly integrated motion classes in
matches of the RoboCup 3D Soccer Simulation League.

8.2.3 Application Scenarios and Further Use

Another important aspect that needs to be addressed in future work is the exploitation of
the compiled qualitative knowledge. So far, the information provided by the SCD frame-
work over the course of a particular analysis run is not yet exploited, neither for a statistical
evaluation of the hitherto perceived course of the game as proposed in section 1.2.3 which
constitutes a first, manifest application scenario, nor as a basis for dependent high-level
approaches in the field of plan/intention recognition, behavior prediction or opponent
modelling. To some extent, preliminary research in the aforementioned fields has al-
ready been conducted within the application domain of robotic/simulated soccer (e.g. in
the RoboCup 2D Soccer Simulation League or in the Four-legged Robot League) in or
with participation of the artificial intelligence working group at the Center for Computing
Technologies (TZI). Those approaches could be reviewed with regard to their aptitude
as follow-up techniques that seize the preliminary results of the SCD analysis in order to
improve the competitiveness of the Virtual Werder 3D team. In order to properly support
dependent high-level approaches the SCD framework must provide efficient means for
knowledge retrieval that abstract the underlying XSB Prolog backend. In doing so, the
SCD framework would develop towards a service provider, granting clearly defined access
to qualitative knowledge while at the same time keeping the concrete knowledge base
implementation transparent for the clients.
7 translated from German: ’Pass in den Lauf’

http://www.robocup.org
http://www.robocup.org
http://www.robocup.org
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8.2.4 Beyond RoboCup: Alternative Application Domains

For the scope of this thesis the analysis methodology was implemented solely for the ap-
plication domain of simulated soccer in the RoboCup 3D Soccer Simulation League. As
the evaluation yielded acceptable results in this primary domain, it would be interesting
to try and port the implemented analysis system to other application domains. Before
leaving the sports domain and seeking for applications in general sports analysis, (ex-
perimental) biology (e.g. cell tracking or the study of social insect colonies [BKV01]) or
automated monitoring (e.g. observance and analysis of traffic scenes (crossroads) or anal-
ysis of pedestrian motion patterns in animate public areas), as an intermediate step, an
adoption from simulated to real human soccer seems to suggest itself. An application in
this field presupposes the availability of raw input data provided by a motion tracking sys-
tem such as [BGB+07], which can pre-process visual data from video recordings of soccer
matches. As a matter of fact, the resulting data of a motion tracking process performed
for the final match of the FIFA world championships 2006 between Italy and France are
available. These were used as input for various analysis by a variety of research groups as
part of a video installation by Harun Farocki8, titled ’Deep Play’, that was presented to
the public at the Documenta XII exhibition in Kassel, Germany in 20079. With regard to
the current implementation of the SCD framework, a prerequisite for such an transition
to other application domains is the introduction of a clear separation of fundamental core
analysis functionality and dedicated modules for a scenario-specific adoption of the SCD
framework.

8 Amongst others, Andrea Miene was involved in the project and the motion captured data was obtained
in direct correspondence with Farocki’s film crew.

9 A dedicated web site is available at:
http://www.documenta12.de/uebersichtsdetails.html?L=0&gk=A&level=&knr=9 (vis-
ited:09/10/2007)

http://www.documenta12.de/uebersichtsdetails.html?L=0&gk=A&level=&knr=9
http://www.robocup.org
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Appendix

A.1 Contents of the DVD

The following register outlines the contents of the DVD that is distributed with the
paperback version of the thesis at hand.

〉 thesis 〉
This directory contains both the LATEX source for the diploma thesis at hand as well
as two distinct versions thereof for print and screen.

. . . 〉 thesis_print.pdf

The standard version of the thesis which is identical with the paperback version.
. . . 〉 thesis_screen.pdf

Screen version of the thesis with more comprehensive colorization. In particular
the constituents of the event and action patterns introduced in section 5.2,
p.84 and p.86 are associated with a color which is consequently employed for
the concrete motion patterns introduced in section 5.3, pp.89. This visual
aids may assist in understanding more deeply the composition of the particular
motion patterns.

〉 code 〉
This directory contains the concrete implementation of the SCD framework.

. . . 〉 requirements.sh

This is a bash script which determines whether or not a particular target system
satisfies the requirements for third party software in order to build, install and
use SCD software such as the SCD Simulator. It lists relevant dependencies
and consequently performs automated checks.

. . . 〉 Makefile

This is a master makefile which controls the installation of SCD applications.
It allows the installation/deinstallation of the SCD Simulator using the ’make
simulator/simulator_uninstall’ targets. The SCD Simulator will be in-
stalled in 〉 ${HOME} 〉 bin 〉, libraries in 〉 ${HOME} 〉 lib 〉. As this is a
development installation, the library headers are also installed in 〉 ${HOME}
〉 include 〉. Throughout the build process, more detailed information is
provided.

. . . 〉 project_scd 〉
This directory contains the source code for the SCD Core Library which imple-
ments the main analysis functionality. A doxygen-generated documentation is
available in html-format (see below).

. . . 〉 build 〉
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. . . 〉 core 〉

. . . 〉 doc 〉 html 〉 index.html

. . . 〉 eval 〉

. . . 〉 knowledgebase 〉

. . . 〉 xml 〉

. . . 〉 configure

. . . 〉 Makefile
. . . 〉 project_scd_simulation 〉

This directory contains the source code for the SCD Simulator that was used
both for development and evaluation purposes. A doxygen-generated docu-
mentation is available in html-format (see below).

. . . 〉 build 〉

. . . 〉 config 〉
This directory contains the comprehensive xml-configuration of the SCD
analysis that was referred to in the implementation chapter (config_scd.xml).

. . . 〉 config_scd.xml

. . . 〉 config_scd.dtd

. . . 〉 config_sim.xml

. . . 〉 config_sim.dtd
. . . 〉 core 〉
. . . 〉 doc 〉 html 〉 index.html
. . . 〉 knowledgebase 〉
. . . 〉 prolog 〉

This directory contains the Prolog implementation that was done for the
scope of this thesis. The file rules.P is of special importance as it
contains the detection cores and thus the concretely implemented motion
patterns. The files interval_[. . .].P contain the Prolog implementation
of the respective interval relations.

. . . 〉 configure

. . . 〉 Makefile
. . . 〉 project_scd_coach_lib 〉

This directory contains the source code for the SCD Coach Lib that constitutes
a branch from the Virtual Werder 3D Coach Lib. It contains all additions to
the coach that were necessary for the integration of the SCD analysis. A
doxygen-generated documentation is available in html-format (see below).

. . . 〉 behaviors 〉

. . . 〉 build 〉

. . . 〉 communication 〉

. . . 〉 core 〉

. . . 〉 doc 〉 html 〉 index.html

. . . 〉 effectors 〉

. . . 〉 knowledgebase 〉

. . . 〉 skills 〉

. . . 〉 configure

. . . 〉 Makefile
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. . . 〉 project_scd_coach 〉
This directory contains the source code for the SCD Coach executable. This
is really only a slim launcher that integrates the SCD Coach Lib. Therefore,
no special doxygen-documentation is provided.

. . . 〉 build 〉

. . . 〉 config 〉

. . . 〉 core 〉

. . . 〉 prolog 〉

. . . 〉 configure

. . . 〉 Makefile
. . . 〉 project_vw3d_base_lib 〉

This directory contains the source code for the Virtual Werder 3D Base Lib
which provides functionality used by the SCD Core Lib, the SCD Simulator
and the SCD Coach Lib.

〉 tools 〉

. . . 〉 rcssserver3d-mod 〉
This directory contains a version UTUtd 3D Soccer Server that was patched
for use in the diploma thesis such that standard binaries from regular RoboCup
competitions can be used (which required in essence a minor modification in
the agent initialization process). This server was used during development and
evaluation.

. . . 〉 agent_binaries 〉
This directory contains agent binaries from other RoboCup teams. In particular
32-bit binaries of the agents used in the evaluation are provided.

. . . 〉 xsb_incognito_3.1 〉

. . . 〉 xsb_sagres_3.0.1 〉

〉 evaluation 〉

. . . 〉 evaluation_basis_logfiles 〉
This directory contains log files of the series of test matches that constitutes
the basis for the largest part of the evaluation performed in chapter 6.

. . . 〉 aeolus_vw3d_0{1|2|3} 〉

. . . 〉 fantasia_vw3d_0{1|2|3} 〉

. . . 〉 fcportugal_vw3d_0{1|2|3} 〉

. . . 〉 seu_vw3d_0{1|2|3} 〉

. . . 〉 wrighteagle_vw3d_0{1|2|3} 〉
Each folder contains the following files:

1. coach.log

The coach log compiled over the course of the game for use with the SCD
Simulator

2. monitor.log

Monitor log for replay of the game in the 3D Soccer Monitor (rcssmonitor3d-
lite)
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. . . 〉 eval_optimizations 〉
Coach logs copied from the raw input folders, basis for performance eval-
uation.

. . . 〉 evaluation_basis_logfiles_extra 〉
This folder contains log files of a series of additional test matches where besides
the SCD Coach, the Virtual Werder 3D agents also wrote agent logs over the
course of the games that are suited as input for the SCD Simulator.

. . . 〉 aeolus_vw3d_01 〉

. . . 〉 fantasia_vw3d_01 〉

. . . 〉 seu_vw3d_01 〉
Each folder contains:

1. coach.log

The coach log compiled during the game for use with the SCD Simulator
2. agent11-stdout.log – agent21-stdout.log

Agent logs compiled during the game for use with the SCD Simulator
3. monitor.log

Monitor log for replay of the game in the 3D Soccer Monitor (rcssmonitor3d-
lite)

. . . 〉 quality_evaluation_reports 〉
. . . 〉 [. . .].log

Debug output generated during offline analysis runs in the SCD Simulator
which contains amongst others data about all detected motion incidences.

. . . 〉 quality_evaluation_reports_extra 〉
. . . 〉 [. . .].log

Debug output generated during offline analysis runs in the SCD Simulator
for the comparison of analysis result under coach- and agent perception.

. . . 〉 quality_evaluation_gamesequences 〉
. . . 〉 ball_passage 〉

Snapshot sequence for scene where the ball passes the influence sphere of
an uninvolved player which leads to a false ball transfer detection.

. . . 〉 performance_evaluation_data 〉
. . . 〉 [. . .].dat

Input data for statistical evaluation and the compilation of plots, produced
during offline analysis runs in the SCD Simulator.

. . . 〉 [. . .].plt

GnuPlot scripts that were used to produce plot shown in chapter 7.
. . . 〉 performance_evaluation_plots 〉

Plots that were produced during the performance evaluation phase.
. . . 〉 performance_evaluation_statistics 〉

. . . 〉 eval_strategy_assembly.ods

Statistical evaluation for ’Explicit Closing’ vs. ’Explicit Lengthening’ fact
assembly strategy (→ Open Office format)
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. . . 〉 eval_strategy_detection.ods

Statistical evaluation for ’Brute Force’ vs ’Guided’ motion incidence de-
tection strategy (→ Open Office format)

. . . 〉 eval_strategy_oblivion.ods

Statistical evaluation for different parameterization of the fact oblivion
strategy (→ Open Office format)

. . . 〉 eval_runtime_performance.ods

Statistical evaluation of the integrated runtime performance of the imple-
mented analysis system (→ Open Office format)

〉 literature 〉
This directory contains the literature database compiled over the course of this thesis
as well as a repository of all referenced documents that could be directly obtained.
All documents in the repository are in pdf-format.

A.2 Excerpts from the SCD Configuration

            <!-- Concrete Classes -->
            <scd:classes value="rest,very_slow,slow,moderate,fast,very_fast,beam"/>
          </scd:classification_type_open>
        </scd:class_core>
        <!-- - </classification_core> -->
        <scd:managed_oblivion validity_duration="2000"/>
        <!-- - </config_details> -->
      </scd:mapping_engine_unary>

      
      <!-- Mapping of Velocity (BALL) -->

      <scd:mapping_engine_unary id="classifier_velocity_ball" 
                                status="&on;"><!--on-->
        <!-- + <config_details> -->
        <scd:data_source value="extractor_velocity"/>
        <scd:predicate id="velocity"/>
        <scd:supported_types value="ball"/>
        <scd:bound_flexibility value="0.05"/>
        <!-- + <classification_core> -->
        <scd:class_core id="&open;"
                        assembly_strategy="&expl_closing;">
          <scd:classification_type_open>
            <!-- Thresholds Open Range Axis -->
            <scd:thresholds value="0.07,0.25,0.5,0.9,1.3,5.0"/>
            <!-- Concrete Classes -->
            <scd:classes value="rest,very_slow,slow,moderate,fast,very_fast,beam"/>
          </scd:classification_type_open>
        </scd:class_core>
        <!-- - </classification_core> -->
        <scd:managed_oblivion validity_duration="2000"/>
        <!-- - </config_details> -->
      </scd:mapping_engine_unary>
      

      <!-- Mapping of Motion Directions (BALL) -->

      <scd:mapping_engine_unary id="classifier_motion_direction"
                                status="&on;"><!--on-->
        <!-- + <config_details> -->
        <scd:data_source value="extractor_motion_direction"/>
        <scd:predicate id="motion_dir"/>
        <scd:supported_types value="ball"/>
        <scd:bound_flexibility value="5.0"/>
        <!-- + <classification_core> -->
        <scd:class_core id="&ring;"
                        assembly_strategy="&expl_closing;">
          <scd:classification_type_ring>
            <!-- Thresholds Ring Axis -->
            <scd:thresholds value="22.5,67.5,112.5,157.5,202.5,247.5,292.5,337.5"/>
            <!--<scd:thresholds value="30.0,60.0,120.0,150.0,210.0,240.0,300.0,330.0"/>-->
            <!-- Concrete Classes -->
            <scd:classes value="northWest,west,southWest,south,southEast,east,northEast,north"/>
          </scd:classification_type_ring>
        </scd:class_core>
        <!-- - </classification_core> -->
        <scd:managed_oblivion validity_duration="2000"/>
        <!-- - </config_details> -->
      </scd:mapping_engine_unary>

      <!-- Mapping of Residence Regions (ALL) -->

      <scd:mapping_engine_unary id="classifier_region"
                                status="&off;"><!--off-->
        <!-- + <config_details> -->
        <scd:data_source value="extractor_location2d"/>
        <scd:predicate id="in_region"/>
        <scd:supported_types value="ball,player"/>
        <scd:bound_flexibility value="1.0"/>
        <!-- + <classification_core> -->
        <scd:class_core id="&plain;"
                        assembly_strategy="&expl_closing;">
          <scd:classification_type_plain>
            <!-- Note: A FIFA conformant soccer pitch with a
                       length of 105m and width of 70m is 
                       assumed! -->
            <scd:stage_one>
              <!-- Thresholds 1st Axis (x-axis) -->

Figure A.1: Excerpt from the SCD configuration which is provided as part of the thesis
DVD ( 〉 code 〉 project_scd_simulation 〉 config 〉 config_scd.xml). The excerpt
shows the configuration for the unary mapping engine which is responsible for the ve-
locity of the ball. In particular the complete choice/parameterization of the appropriate
classification core is shown.

A.3 EBNF of Agent Worldstate Messages

The format of the worldstate messages which are compiled by both Virtual Werder 3D
players and the SCD Coach in order to obtain a complete game-record from the respective
agent’s point of view, is expressed in EBNF-notation as follows:
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worldstate := ( eval time_in f o kb_in f o )
time_in f o := ( time (sim stime ) ( game gtime ) ( playmode mode ) )

kb_in f o := ( kb (team side name ) (moving_ob jects moving_ob ject∗ ) )
ob jects := player | mysel f | ball
player := ( mo (team side name ) ( unum no ) position velocity )

mysel f := ( mo (team side name ) ( unum no ) position velocity ( myself ) )
ball := ( mo (id BALL) position velocity )

position := ( pos x y z )
velocity := ( vel x y z )

x, y, z, gtime := float
side, no, stime, mode := int

name := string

Seizing the style of messages used in the two-way communication between soccer
agents and the RoboCup 3D Soccer Server, the worldstate messages are valid Lisp-like
S-expressions [O+06].
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